SIMAAN A. Jalila

SIMAAN A. Jalila

Location
Service 342
Telephone
04 13 94 56 20
Status
DR or equivalent
Team
BiosCiences
Présentation

Career path

2016: CNRS director (Marseille)

2002: CNRS researcher in Marseille

2000-2001 : Postdoc in Raman Spectroscopy with Prof. Peter Hildebrandt/ Max Planck Institut für Strahlenchemie, Mülheim / Ruhr (Allemagne) et à Instituto de Tecnológia Química e Biológica, Oeiras (Portugal)

1997-2000 : PhD in Bioinirganic chemistry, Paris-Sud University (Orsay) / Prof Jean-Jacques GIRERD and Frédéric Banse

1996 : «Agrégation externe de Sciences Physiques Option Chimie ».

1993 -1997: Student at the « Ecole Normale Supérieure de Cachan »  Chemistry department. Physical Chemistry studies at Université Paris-Sud, Orsay.

Honour

  • Ecole Normale Supérieure de Cachan scolarship (1993-1997)
  • PhD grant from French Ministry (1997-2000)
  • City of Marseille grant (2002)
  • Invited researcher at the university of Cuernavaca (UNAM), Mexico (2010)
  • City of Marseille attractivity trophee (2017)
  • Biomimetic Innovation Price -Region PACA (2019)

Research themes

Copper containing Monooxygenases enzymes and model complexes

In collaboration with Marius Réglier, Christophe Decroos, Bruno Faure, Maylis Orio (iSm2/BiosCiences)Current PhD students: , Manon Pujol (with C. Decroos; 2019-); Stefani Gamboa (with M. Orio; 2019-); Yongxing Wang (with A. Martinez, 2021-); Rébecca Leblay (with B. faure, 2021-);Former students: Alessia Munzone (with C. Decroos, 2017-2021),  Rogelio Gomez Pineiro (with M. Orio, 2018-2021)

Copper containing Monooxygenases couple dioxygen reductive activation to oxygen atom transfer into a substrate's C-H bond. Copper Monooxygenases display active sites of diverse nuclearities and structures. We are interested in several monooxygenases and in particular, in Lytic Polysaccharide Monooxygenases or LPMOs, mononuclear copper-containing enzymes that boost recalcitrant polysaccharide degradation (biomass) via oxidative pathways. LPMO possess a rare coordination motif: the N-terminal histidine is bound to the copper ion via both its imidazole ring and the amino terminal group (Histidine-brace motif).

Our studies are centered on  :

  • Understanding the mechanism of enzymatic systems (e.g. LPMOs)
  • Preparing copper-containing bio-inspired models and trapping reaction intermediates
  • Performing water oxidation/activation with copper complexes
  • preparing bioinspired catalysts for improved biomass utilization

External collaborations: Dr. Catherine Belle, Dr. Hélène Jamet and Dr. Aurore Thibon-Pourret (Université Grenoble-Alpes / CNRS); Dr. Nicolas Le Poul (Université de Bretagne Occidentale, CNRS); Prof. Ivan Castillo (UNAM, Mexico, ECOS-Nord project);

ACC Oxidase, a non-heme iron(II) enzyme

PhD student (past): Dr. Eugénie Fournier (with Prof. V. Belle, 2015-2018)

The plant hormone ethylene is essential for many aspects of plant life germination, senescence, fruit ripening and defense mechanisms. Ethylene is directly biosynthesized from 1-aminocyclopropane carboxylic acid (ACC), a metabolite of methionine. This step is catalyzed by ACC Oxidase a non-heme iron(II) containing enzyme. The conversion of ACC into ethylene requires the presence of ferrous ions, dioxygen and ascorbate. In addition, ACCO also requires the presence of CO2 (or HCO3-) for activity.

The crystallographic structures revealed a coeur folded in beta barrel that contains the active site. The iron(II)  ion is coordinated by the side chains of 2 histidines and one aspartate in a classical facial triad. Although several set of structures have been obtained, there are still question on the active conformation of the enzyme and in particular, that of the C-terminal part (in red on the figure ).Thanks to an interdisciplinary approach we aim at getting more information on this enzyme 

Our studies are centered on:

  • Understanding the mode of action of the enzyme
  • Exploring metal / activity modification
  • Getting information on the active conformation and dynamic of the C-terminal part
  • preparing model complexes
  • using ACCO as a platform to develop artificial enzymes

External collaborations: Prof. Valérie Belle and Dr. Marlène Martinho (Université d'Aix-Marseille); Prof. Christian Limberg (Humboldt University, Berlin, Germany); Prof. József Kaizer (University of Pannonia, Veszprém, Hungary); Dr. Wadih Ghattas & Prof. Jean-Pierre Mahy (Université Paris-Saclay); Prof. Sam De Visser (Univ. Manchester, UK).

Collaborations and groups

French groups

  • Dr. Wadih Ghattas & Prof. Jean-Pierre Mahy (Université Paris-Saclay)
  • Prof. Valérie Belle et Dr. Marlène Martinho (Université d'Aix-Marseille)
  • Dr. Catherine Belle, Dr. Hélène Jamet and Dr. Aurore Thibon-Pourret (Université Grenoble-Alpes / CNRS)
  • Dr. Nicolas Le Poul (Université de Bretagne Occidentale, CNRS);

International groups

  • Prof. Christian Limberg (Humboldt University, Berlin, Germany)
  • Prof. Kallol Ray (Humboldt University, Berlin, Germany)
  • Prof. József Kaizer (University of Pannonia, Veszprém, Hungary)
  • Prof. Sam de Visser (Univ. Manchester, UK).
  •  Prof. Ivan Castillo (UNAM, Mexico, ECOS-Nord project)

Administrative responsabilities

Responsabilités en cours

Scientific outreach efforts

Diels-Alderases artificielles au service de la chimie verte. Wadih Ghattas, Jean-Pierre Mahy, Rémy Ricoux, A. Jalila Simaan, Marius Réglier

Techniques de l’Ingénieur, date publication le 10 septembre 2021, ref : IN404 V1

Author publications