Palladium-Catalyzed CS Activation/Aryne Insertion/Coupling Sequence: Synthesis of Functionalized 2-Quinolinones

Ying Dong, Bangyu Liu, Peng Chen, Qun Liu,* and Mang Wang*

doi: 10.1002/anie.201310340

Yohan DUDOGNON, STeRéO group meeting, 24/03/2014
State of art

Synthesis of Xanthones, Thioxanthones, and Acridones by the Coupling of Arynes and Substituted Benzoates

\[
\begin{align*}
\text{R}^1\text{CO}_2\text{Me} & \quad + \quad \text{TMS}\text{R}^2 \\
\text{CsF} & \quad \rightarrow \\
\text{R}_1\text{X} & \quad \text{R}^2
\end{align*}
\]

\(X = \text{O, S, NMe}\)

J. Zhao, R. C. Larock, J. Org. Chem. 2007, 72, 583
doi: 10.1021/jo0620718

Aryl Methyl Sulfides as Substrates for Rhodium-Catalyzed Alkyne Carbothiolation: Arene Functionalization with Activating Group Recycling

\[
\begin{align*}
\text{MeS} & \quad \text{Me} \\
\text{1a} & \quad + \quad \text{2a} \\
\text{[Rh(DPEphos)-} & \quad \text{ligand)][\text{BARF}_4] \\
\text{solvent, temp, time} & \quad \rightarrow \\
\text{MeS} & \quad \text{Me}
\end{align*}
\]

doi: 10.1021/ja2108992
State of art

- Transition-metal-catalyzed CS bond activation for CC and C–heteroatom bond formation

H. Prokopcov, C. O. Kappe, Angew. Chem. 2009, 121, 2312

- Applications of arynes in cyclization reactions

Previous work of the team

Regio- and stereoselective synthesis of 2-cyclopentenones via a hydrogenolysis-terminated Heck cyclization of β-alkylthio dienones

\[
\begin{align*}
\text{Pd(PPh}_3\text{)}_2\text{Cl}_2 (10\%) & \quad \text{DMF/NEt}_3 \\
90^\circ \text{C, N}_2, 36 \text{ h} & \quad \text{X}
\end{align*}
\]

Palladium-catalyzed/copper-mediated desulfitative annulation of 2-methylthiobenzofurans with 2-hydroxyphenylboronic acids

\[
\begin{align*}
\text{RO} & \quad \text{B(OH)}_2 \\
\text{1d-j} & \quad \text{CuTC (1.5 eq.), N}_2 \quad \text{Dioxane, reflux}
\end{align*}
\]

Overview

Strategy:
- Take advantage of the synthetic power of functionalized ketene dithioacetals
- Take advantage of the tremendous applications of aryynes in cyclization reactions

Use Pd-catalyzed CS activation as the key to developing an annulation between aryynes and \(\alpha \)-carbamoyl ketene dithioacetals.

Interests:
- Effective synthesis \(2 \)-quinolinones which have provoked great interest in chemical and biological field
- Possible versatile transformations of the 4-functionalized \(2 \)-quinolinones

Challenge:
- Avoid the addition of the strongly nucleophilic sulfur atom to the aryynes and instead favoring insertion of the aryynes into the CS bond.

Scheme 1. Reactions of thioorganics with benzyne.
Screening of the reaction conditions

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Pd</th>
<th>Ligand (mol %)</th>
<th>2a (equiv)</th>
<th>CsF (equiv)</th>
<th>Toluene/MeCN</th>
<th>Yield [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)$_2$</td>
<td>$-$</td>
<td>1.5</td>
<td>3</td>
<td>0:1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)$_2$</td>
<td>$-$</td>
<td>1.5</td>
<td>3</td>
<td>1:1</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$</td>
<td>$-$</td>
<td>1.5</td>
<td>3</td>
<td>3:1</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)$_2$</td>
<td>$-$</td>
<td>2</td>
<td>4</td>
<td>1:1</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)</td>
<td>$-$</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>[Pd(PPh$_3$)$_4$]</td>
<td>$-$</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>[PdCl$_2$(PPh$_3$)$_2$]</td>
<td>$-$</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>[PdCl$_2$(dppe)]</td>
<td>$-$</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>Pd(OAc)$_2$</td>
<td>dpff (15)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>Pd(OAc)$_2$</td>
<td>dpff (15)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>90[c]</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)$_2$</td>
<td>Xanthos (15)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>87</td>
</tr>
<tr>
<td>12</td>
<td>Pd(OAc)$_2$</td>
<td>PC$_3$ (30)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Pd(OAc)$_2$</td>
<td>PPh$_3$ (30)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>Pd(OAc)$_2$</td>
<td>dpff (8)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>53[d]</td>
</tr>
<tr>
<td>15</td>
<td>Pd(OAc)$_2$</td>
<td>dpff (15)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td>28[e]</td>
</tr>
<tr>
<td>16</td>
<td>Pd(OAc)$_2$</td>
<td>dpff (15)</td>
<td>3</td>
<td>5</td>
<td>1:1</td>
<td><5[f]</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 1a (0.3 mmol), 2a, CsF, Pd (10 mol%), toluene/MeCN (4 mL). Reaction was performed in a sealed tube at 80°C under N$_2$ for 18 h. 2a was added in six increments (3 h x 6) to avoid homocoupling of benzyne. [b] Yields of isolated products. [c] Reaction was performed in a flask with a condenser under N$_2$. [d] Used 5 mol % of Pd(OAc)$_2$. [e] At 50°C. [f] At room temperature.
Scope of the ketene dithioacetals

![Chemical structure and reaction scheme

<table>
<thead>
<tr>
<th>Entry</th>
<th>Products 3</th>
<th>Yield [%][b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a, 3a, R^2 = Bn</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>1b, 3b, R^2 = 4-MePhCH_2</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>1c, 3c, R^2 = Ph</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>1d, 3d, R^2 = nBu</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>1e, 3e, R^2 = Cy</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>1f, 3f, R^2 = Bn</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>1g, 3g, R^2 = nBu</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>1h, 3h, R^2 = Bn</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>1i, 3i, R^2 = Ph</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>1j, 3j, R^2 = nBu</td>
<td>79</td>
</tr>
<tr>
<td>11</td>
<td>1k, 3k, R^2 = Bn</td>
<td>82</td>
</tr>
<tr>
<td>12</td>
<td>1l, 3l, R^2 = Ph</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>1m, 3m</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>1n, 3n + 3h</td>
<td>27 + 20</td>
</tr>
<tr>
<td>15</td>
<td>1o, 3o, R^1 = 4-NO_2Ph</td>
<td>88</td>
</tr>
<tr>
<td>16</td>
<td>1p, 3p, R^1 = PhCO</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>1q, 3q</td>
<td>73</td>
</tr>
<tr>
<td>18</td>
<td>1r, 3r</td>
<td><15[b]</td>
</tr>
</tbody>
</table>
Scope of arynes

[Image of chemical structures and reactions]

[a] Reaction conditions: 1 (0.3 mmol), 2 (1.5 mmol), CsF (2.1 mmol), Pd(OAc)$_2$ (0.03 mmol), dppf (0.045 mmol), toluene/MeCN (4 mL, 1:1, v/v) in a sealed tube, 2 was added in six increments (0.25 mmol/3 h). Yields of isolated products. [b] Yields in parenthesis were obtained by using 0.9 mmol of 2 and 1.5 mmol of CsF. [c] The by-products 4b and 4b’ were isolated in 26% yield. [d] The ratio of two isomers, based on 1H NMR spectroscopy, are included within parentheses.
Mechanism

Key intermediate

Ligands omitted for clarity
Applications

• Palladium-catalyzed crosscoupling with phenylboronic acid in the presence of copper(I)-thiophene-2-carboxylate

![Chemical structure](image1)

PhB(OH)$_2$ (1.5 equiv)
Pd(PPh)$_3$ (7 mol%)
CuTC (2 equiv)
1,4-dioxane, reflux
8 h, 79%

• Direct substitution of the 4-methylthio group of with phenylmethanamine give the 4-amino quinolinone

![Chemical structure](image2)

BnNH$_2$ (1.5 equiv)
EtOH, reflux
24 h, 81%

• Synthesis of the pyrimidoquinolin-5-one by the condensation with acetimidamide

![Chemical structure](image3)

\[\text{NaNH} \cdot \text{HCl} \]
DMF, 90 °C
10 h, 86%
Conclusion

- Development of a novel and efficient palladium-catalyzed protocol for the synthesis of 2-quinolinones

- First example for the reaction of aryynes with thioorganics based on palladium-catalyzed CS bond activation

- Functionalized 2-quinolinone as useful building blocks

- Discovery of the facile CS bond activation should lead to some new and efficient palladium-catalyzed transformations

- Work on the applications, extension of the scope, mechanistical studies are ongoing