

Introduction

Used in Chemistry, jewelry, electronics, coins,

What makes gold so attractive in chemistry

Au^{III}

Four coordination sites Square planar complexes Au^I

Two binding sites Linear geometry

- Gold complexes are moisture and air stable
- Ability to activate various π -systems
- Gold price (USD/ gram)

Silver (Ag)	Palladium (Pd)	Gold (Au)	Platinum (Pt)	Rhodium (Rh)				
1.3	28.6	50.5	64.9	83.9				
http://www.kitco.com/								

PLAN

- **1.** Asymmetric Aldol Addition
- 2. Asymmetric Activation of Allenes
- 3. Asymmetric Alkene Activation
- 4. Cyclopropanation of Vinyl Arene
- 5. Enantioselective 1,3-dipolar Cycloaddition

Asymmetric Aldol Addition

Y. Ito; M. Sawamura; T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405.

Ligand Screening

A. Togni; S. D. Pastor, J. Org. Chem. 1990, 55, 1649.

Refined Transition-State Model

A. Togni; S. D. Pastor, J. Org. Chem. 1990, 55, 1649.

Application to the Asymmetric synthesis of D-threo-Sphingosines

Y. Ito; M. Sayamura; T. Hayashi, Tetrahedron. Lett. 1988, 29, 239.

Asymmetric Activation of Allenes

Addition of Carbon Nucleophiles to Allenes

C. Liu, R. A. Widenhoefer, Org. Lett. 2007, 9, 1930.

Proposed Mecanism

C. Liu, R. A. Widenhoefer, Org. Lett. 2007, 9, 1930.

Addition of Carbon Nucleophiles to Allenes

H. Teller; S. Flugge; R. Goddard; A. Furstner, Angew. Chem. Int. Ed. 2010, 49, 1949.

Addition of Carbon Nucleophiles to Allenes

H. Teller; S. Flugge; R. Goddard; A. Furstner, Angew. Chem. Int. Ed. 2010, 49, 1949.

Proposed Mecanism

H. Teller; S. Flugge; R. Goddard; A. Furstner, Angew. Chem. Int. Ed. 2010, 49, 1949.

Carbone-Heteroatom Bond Formation

Carbone-Heteroatom Bond Formation

G. L. Hamilton; E. J. Kang; M. Mba; F. D. Toste; Science, 2007, 317, 496

Carbone-Heteroatom Bond Formation

2.5 mol% dppm(AuCI)₂, 5 mol% AgX2 Benzene, 23 °C

Entry	Substrate	n	R ¹	R ²	R ³	Time (h)	Product	% Yield	% ee
1	1	1	-(CH ₂) ₄ -	н	н	1	2	90	97
2	8	1	CH ₃	н	н	1	15	91	95
3	9	1	CH ₂ CH ₃	н	н	5	16	89	96
4	10	1	-(CH ₂) ₄ -	н	CH_3	2	17	79	99
5	11	1	-(CH ₂) ₄ -	н	Ph	30	18	86	92
6	12	1	-(CH ₂) ₄ -	CH_3	н	13	19	90	90
7	13	2	CH ₃	н	н	15	20	81	90

Chiral counterion strategy

G. L. Hamilton; E. J. Kang; M. Mba; F. D. Toste; Science, 2007, 317, 496

Application to the Total Synthesis of (-)-isochrysotricine

F. Volz; N. Krause, Org. Biomol. Chem, 2007, 5, 1519

Asymmetric Alkene Activation

M. Bandini; A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9533

Asymmetric Alkene Activation

10 mol% (AuCl) ₂ , 20 mol% L	*
20 mol% AgOTf, tol, 0°C	

	Entry	Alcohol	$R/R^{1}/R^{2}/R^{3}$	<i>t</i> [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
MeO. PAr ₂	1 ^[d]	1 b	Et/H/H/Br	48	60	86
	2	lc	Et/H/H/Me	24	68	92
	3 ^[d]	1 d	Et/H/H/OMe	24	79	84
Ar= 3,5-tBu-4-MeO-C6H2	4	1 d	Et/H/H/OMe	48	55	96
	5	le	Et/H/Me/H	48	91	83
	6 ^[d]	1 f	Et/H/H/Cl	48	52	85
	7	1 g	Et/Me/H/H	48	_	_[e]
	8	1 h	Me/H/H/H	24	74	85
	9	1i	tBu/H/H/H	48	53	92
	10 ^[d]	1 j	Et/H/H/OBn	24	78	80
	11	1j	Et/H/H/OBn	48	69	82

M. Bandini; A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9533

Asymmetric Alkene Activation

M. Bandini; A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9533

Enantioselective Hydrogenation of Alkenes

C. Gonzalez-Arellano; A. Corma; M. Iglesias; F. Sanchez, Chem. Commun, 2005, 3451

Asymmetric Cyclization of 1,3-enynes

Y. Matsumoto; K. B. Selim; H. Nakanishi; K. I. Yamada; Y. Yamamoto; K. Tomioka, Tetrahedron Letters, 2010, 51, 404

Cyclopropanation of Vinyl Arene

M. J. Johansson; D. J. Gorin; S. T. Staben; F. D. Toste, J. Am. Chem. Soc, 2005, 127, 18002

Cyclopropanation of Vinyl Arene

L. D. G. Watson; D. J. Gorin; S. Ritter; F. D. Toste, J. Am. Chem. Soc, 2009, 113, 2056

Proposed Mecanism

M. J. Johansson; D. J. Gorin; S. T. Staben; F. D. Toste, J. Am. Chem. Soc, 2005, 127, 18002

Enantioselective 1,3-Dipolar Cycloaddition

then TMSCHN₂, or CH_2N_2

L*

Azlactones and electronic deficient alkenes

entry		product	time (h)	yield (%) ^b	ee (%)
1	$\mathbf{b}, \mathbf{R} = \mathbf{M}\mathbf{e}$	$Ar = p-MeO-C_6H_4-$	18	77	95
2	$\mathbf{c}, \mathbf{R} = \mathbf{M}\mathbf{e}$	$Ar = p - Br - C_6 H_4 -$	15	75	93
3	$\mathbf{d}, \mathbf{R} = \mathbf{M}\mathbf{e}$	$Ar = p-C1-C_6H_4-$	15	72	92
4	$\mathbf{e}, \mathbf{R} = \mathbf{M}\mathbf{e}$	$Ar = p - NO_2C_6H_4 -$	1.5	98	91
5	$\mathbf{f}, \mathbf{R} = \mathbf{M}\mathbf{e}$	$Ar = o-Me-C_6H_4-$	4	73	86 ^c
6	$\mathbf{g}, \mathbf{R} = \mathbf{H}$	Ar = Ph	24	84	-98^{d}
7	h, R = allyl	Ar = Ph	8	86	87 ^c
8	i, R = Ph	Ar = Ph	1.5	35	78 ^e
9	$\mathbf{j}, \mathbf{R} = \mathbf{B}\mathbf{n}$	Ar = Ph	36	71	68 ^c

A. D. Melhado; M. Luparia; F. D. Toste, J. Am. Chem. Soc, 2007, 129, 12638

Enantioselective 1,3-Dipolar Cycloaddition

A. D. Melhado; G. W. Amarante; Z. J. Wang; M. Luparia; F. D. Toste, J. Am. Chem. Soc, 2011, 133, 3517

Proposed Mecanism

A. D. Melhado; M. Luparia; F. D. Toste, J. Am. Chem. Soc, 2007, 129, 12638

Conclusion

"The future of gold catalysis still involves a lot of theoretical work, and we need to understand more about how it works," Toste said. "But already, some of these reactions are being used by medicinal chemists, and it's a really exciting field."

Source: University of California - Berkeley

For Review see: S. Sengupta, X. Shi, *ChemCatChem.* **2010**, **2**, **609** R. A. Widenhoefer, *Chem. Eur. J.* **2008**, **14**, **5382**