Classical Reactions in Homogenous Gold Catalysis

Rahmani Raphaël 18/10/07

Gold in Chemist history

An increasing interest

Gold and Hydroarylations

Reetz, M.T.; Sommer, K. Eur. J. Org. Chem. 2003, 68, 3385

Hydroarylation : Mechanism

Application : Synthesis of Coumarines

Hydroarylation : Reactivity with Epoxides

Nucleophilic addition to C-C multiple bond

General mechanism for nucleophilic addition

Claisen Rearrangement

Selectivity for propargylic

Sherry, B.D.; Toste, F.D., J. Am. Chem. Soc. 2004, 126, 15978

Conia-Ene Reaction of β -Ketoesters

Mechanism confirm with a deuterium study Works with terminal alkyne only

Kenedy-Smith, J.J.; Staben, S.T., Toste, F.D. J. Am. Chem. Soc. 2004, 126, 4526

R²O

Me

Et

t-Bu

CH₂CCH

93

81

79

 \mathbb{R}^1

Me

Ph

Me

Me

Carbocyclization of Acetylenic Dicarbonyl Compounds EtO 1 mol% (PPh₃)AuOTf _∽O_{Et} MeO CH₂Cl₂, RT Et Ρh 90% 96% CO₂Me / Ph CO₂Me ∽0_{Et} MeO Θ Ĥ 94% 99% BnÓ \oplus [Au] $\underline{C}O_2Me$ [Au] CO₂Me 90%

Staben, S.T., Kenedy-Smith, J.J.; Toste, F.D. J. Am. Chem. Soc. 2004, 126, 5350

Cyclization of silyl enol

Cyclization of Enamines

Ferrer, C.; Echavarren, A.M. Angew. Chem. Int. Ed. 2006, 45, 1105

Synthesis of Pyridines

Ring Enlargement Reactions

Hasmi, A.S.K; Sinha, P. *Adv. Synth. Cat.* **2004**, 346, 432 Markham, J.P.; Staben, S.T., Toste, F.D. *J. Am. Chem. Soc.* **2005**, 127, 9708

Intramolecular hydroamination

	4	11	
n =	1		
R1	R2	hex	
hept	Н	ot	
hex	Me	er	
hept	Ме	pent	
oct	н	ph	
001		Н	
		Н	

n _ 2

Fukuda, Y.; Utimoto, K.; Nozaki, H. *Heterocycles* **1987**, *25*, 297 Fukuda, Y.; Utimoto, K. *Synthesis* **1991**, 975

Cyclization of allenyl amines

dr

>99:1

94:6

95:5

70:30

46:54

Seth L. Crawley & Raymond L. Funk, Org. Lett. 2006, 18, 3995

Multicomponent Synthesis of aminoindolines

Synthesis of Furane

Rearrangement of alkynones

Hashmi, A.S.K. et al Angew. Chem. Int. Ed. 2000, 39, 2285

Synthesis of Furane

Rearrangement of alkynones cyclopropanes

Zhang et al Angew. Chem. Int. Ed. 2006, 45, 6704

Nazarov-like Reaction

Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442

Synthesis of 1-bromo-Furane

Rearrangement of allenyl ketones

Sromed, A.W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500

Domino Claisen/ Allene Cyclisation

Suhre, M.H.; Reif, M.; Kirsch, S.F. Org. Lett. 2005, 7, 3925

Cycloisomerization of Bis-homopropargylic Diols¹

R = Bn, Ph, But, Cinnamyl, allyl

¹ Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J. *J. Am. Chem. Soc.* **2005**, 127, 9976 ² Barluenga, J. *et al Angew. Chem., Int. Ed.* **2006**, *45*, 2091

Application, Synthesis of A-D rings of Azaspiracid

Toxin responsible for human poisonings in the Nederlands in 1995

Neurotoxic and tumor-promoting potential

Two total synthesis (Nicolaou K.C., Evans D.A.)

Neurotoxic and tumor-promoting potential

Application, Synthesis of A-D rings of Azaspiracid

Forsyth et al. Angew. Chem. Int. Ed. 2007, 46, 279

Gold Carbene Chemistry

Generation of Gold Carbenes

From alkynes and alkenes

From propargyl carboxylates

Elimination of Gold-Carbene

[Au]

н

Enynes Cycloismerization

Luzung, M.R.; Markham, J.; Toste, F.D. J. Am. Chem. Soc., 2004, 126, 10858

Electron poor Enynes Cycloisomerization

Another pathway for Cycloisomerizations

Cyclization of Nitrogen Tethered Enynes

Nieto-Oberhuber, C. et al Angew. Chem. Int. Ed., 2004, 43, 2402

Luzung, M.R.; Markham, J.; Toste, F.D. *J. Am. Chem. Soc.*, **2004**, 126, 10858 Zhang, L.; Kozmin, S. *J. Am. Chem. Soc.*, **2005**, 127, 6962

Fürstner, A.; Hannen, P. Chem. Commun. 2004, 2546

Formation of 1,4/1,3-Cyclohexadienes

Formation of 1,4/1,3 Cyclohexadienes

Zhang, L.; Kozmin, S. J. Am. Chem. Soc., 2004, 126, 11806

Synthesis of Tetracyclo[3.3.0.0]octanes

Kim, S.M.; Park, J.H.; Choi, S.Y.; Chung, Y.K. Angew. Chem. Int. Ed. 2007, 46, 6172

Synthesis of Naphtalenes

R1 = alkyl, aryl R2 = alkyl, aryl, silyl, acyl, CO2alkyl R3 = H, alkyl, silyl

Kim, N. *et al Org. Lett*, **2005**, 7,5289 Gupta A.K. et al Green Chem., 2006, 8, 25

Application : Synthesis of the steroïd skeleton

Hildebrandt, D.; Dyker, G. J. Org. Chem 2006, 71, 6728

Sato, K.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2005, 70, 8977

Phenol Synthesis

Х	R1	R2	Yield (%)
CH ₂	Н	Н	65
0	Н	Н	69
NTs	Н	Н	97
NTs	Ме	Н	94
NTs	Н	Me	93
C(CO ₂ Me) ₂	Н	Н	88
NTsCH2	Н	Н	81

Hasmi et al. Angew. Chem. Int. Ed. 2004, 43, 6545

Mechanism of Phenol Synthesis

Hasmi et al. Angew. Chem. Int. Ed. 2005, 44, 2798

Conclusion

- Activation of aryl CH bonds, mechanism not clear
- Activation of alkynes, allenes and alkenes (nucleophilic additions to CC multiple bond)
- Carbene reactivity (good selectivity, good yield)

Selected Reviews

Recent reviews on gold homogenous catalysis :

Hashmi, S.K. *Chem. Rev.* 2007, 107, 3180 - 3211
Fürstner, A.; Davies, P.W. *Angew. Chem. Int. Ed.* 2007, 46, 3410 - 3449
Marion, N., Nolan, S.P. *Angew. Chem. Int. Ed.* 2007, 46, 2750 - 2752
Jiménez-Núñez, E.; Echavarren, A.M. *Chem. Commun.* 2007, 333 - 346
Nolan, S.P. *Nature* 2007, 496 - 497
Gorin, D.J.; Toste, F.D. *Nature* 2007, 395 - 403
Hashmi, S.K.; Graham, J.H. *Angew. Chem. Int. Ed.* 2006, 45, 7896 - 7936
Zhang, L.; Sun, J.; Kozmin, S.A. *Adv. Synth. Cat.* 2006, 348, 2271 - 2296
Hoffmann-Röder, A.; Krause, N. *Org. Biomol. Chem.* 2005, 387 - 391
Hashmi, S.K. *Gold Bull.* 2004, 37, 51 - 65
Hashmi, S.K. *Gold Bull.* 2003, 36, 3 - 9