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Malaria
« The most significant disease for world civilization over the past three millenia »

Caused by different species of the parasite Plasmodium
Transferred to another person by the females of Anopheles mosquitoes

Most conspicuous symptom: fever
* Patients can recover but weakened (listless and anemic)
* A fatal form of Malaria caused by Plasmodium Falciparum

Clots 1n the brain

Today: - Between 300 and 500 million of new cases worldwide each year
- Between 1.5 and 2.7 million deaths caused

Kaufman, T. S.; Ruveda, E. A. Angew. Chem. Int. Ed. 2005, 44, 854-885



Examples of Anti-Malarial Drugs
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Me 0
Chloroquine Artemisin
(marketed under a (Natural product, used in Chinese medicine
variety of names) called qinghaosu)
NN
Cl .
HCI
Proguanil
hydrochloride Atovaquone

~

Combination (Malarone®)



OMe

40% (Pharmaceutical)
300-500 tons per annum

produced commercially

by extraction from cinchona barks T 60% (Food)



History of discovery of Quinine and its structure

1500 ~ < Malaria brought by the Europeans to America

* Remedy found by the Incas, despite their relative inexperience with this disease

-~

Extracts from the bark of the cinchona trees
(rain forests covering the eastern flank of the
Andes mountains)

Cinchona officinalis

» Remedy brought back to Europe (role of the Jesuites at Rome)
1677 < Bark introduced in the London Pharmacopeia

1681 e« Universally accepted as an antimalarial drug



1820 ~  Pierre Joseph Pelletier and Joseph Bienaimé Caventou isolated quinine
from cinchona bark.

@ It allowed:

- to show that quinine was the active compound against malaria
- to administrate accurate doses of medicine for patients
- the first extraction factory of quinine in Paris

1849 ~ Adolf Strecker identified the correct formula for quinine:
C,oH24N,0,
1850-1908 Since then, several laboratories carried out experiments

to understand the connectivity and identify the different functionnal groups
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The discovery of an important intermediate by Pasteur

1853

 During his works on tartaric acid, Pasteur searched for chiral amines
for resolution of the salts of this acid.

* In this context, he tried:

H,S0,

Quinotoxine 10



1854

First Attempt for the Synthesis: William Henry Perkin, Sr.

August Wilhelm von Hoffman:

“... it is obvious that naphthalidine [now a-naphthylamine],

differing only by the elements of two equivalents of water might

pass [into quinine] simply by an assumption of water. We

cannot of course, expect to induce the water to enter merely by

placing it in contact, but a happy experiment may attain this

end by the discovery of an appropriate metamorphic process
> [37]

2 X (C10H9N) +2 H20 = C20H22N202
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1856 ~ Perkin, Sr. following his mentor arithmetical idea considered:
2x (CipH3N) +3 [0] = CyHp4N,0, - H,O

~~

During his Easter holidays, he tried:

N-allyltoluidine :
coal tar product

~  Finally, he discovered:

R
NH; NH, NH, Me Ny Me
NHy  KyCrO, j@( Q
~
* " H,N NG N
Me X@ @

Mauveine: a typical purple dye




The three important steps provided by Rabe and Kindler

1908 ~ Connectivity of Quinine established by Paul Rabe

C He began to consider the possibility of a synthesis of the alkaloid

Quite challenging!
16 stereoisomers possible (4 stereocenters)

C He chose to try to reconstruct quinine from quinotoxine

OMe OMe
IN
i%_ — HN
Y~ “oH Y o
N~
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The three important steps provided by Rabe and Kindler

1918 _23 —
OMe
OMe
N NaOBr _23
N

\

H |
| N O AN OBI‘
INPZ |
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EtONa, EtOH

(25% overall)

N
l | 0
N A
Al powder
NaOEt/EtOH

(12%)

OMe

Epi-quinidine Quinidine Quinine Epi-quinine




Prelog’s deqgradation and reconstitution of Quinotoxine

~
N degradation

| path
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—_———
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R= H cinchotoxine
R= OMe quinotoxine

hydrolysis and
decarboxylation
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Woodward and Doering: The first formal synthesis of Quinine

Doering Woodward
1966 ACS award 1965 Nobel Prize for Chemistry
for Creative Work for « his outstanding achievements

in Synthetic Organic Chemistry in the art of organic chemistry »
(Most known his research =
in physical organic chemistry) “  Total Syntheses
cholesterol, cortisone (1952),
strychnine (1954),
colchicine (1965)

cephalosphorin (1966)

1944: Context of the synthesis: the Second World War

Seeman, J. I. Angew. Chem. Int. Ed. 2007, 46, 1378-1413
16



Woodward’s Strateqy: Access to (z)-Homomerogquinene

MeO

Me 7 OMe
8 LiLN — N
% 'OH S Bz
| O
N~

OMe
OMe | S
N~
N
H
Y7 °©
N~
Homomeroquinene Quinotoxine
» OH
Woodward, R. B.; Doering W. E. J. Am. Chem. Soc. 1944, 67, 860-874 Me

17



Woodward and Doering: The first total synthesis of (z)-Homomeroguinene

OEt N
/©\ FLNCHIOED: /©\/N\)\ sl > /E:(?
HO CHO ~ HO Z OEt HO =N

NaOH, crystallization
94%

then H" 64%
Plperldlne, - AN NaOMe, MeOH AN Hz, Pt,
N > N NH
HCHO, EtOH o Z 220°C,16h  HO 2 AcOH HO
Me Me
N
61% O 65%
H
Ac,O X H, Raney Ni 1) H,Cr,0; AcOH
~ > N > N
HO AC pom, 150°c, HO Ac i) Et,0/ H,O O H Ac
Me 205 bar Me (diastereomer separation) Me

1:1 cis /trans
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Woodward and Doering:
The first total synthesis of (x)-Homomeroguinene

CO,Et
H
EtO-N=0, NaOEt,
N\ > _—
0 " Ac EtOH o
Me
CO,Et
Me
Hy Pt . Mel, i) 60 % KOH, 180°C, 1h
AcOH, 1-3 bar NH, — K,co0; i) KNCO ]
N
Ac
91% (two steps)
CO,Et

HCI1 (0.1 N) Dilute HCI

PhCOCI, K,CO;

EtOH, reflux, 100%
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Woodward and Doering:
The first total synthesis of (x)-Homomeroguinene

MeO
Os_OEt
MeO X 0 —
— OMe
EtO,C
N 2 _ EtO,C N
o Bz
NaOEt, 80°C | X 0O
=
OMe _23 OMe
i) 6N HCl, reflux (50%) N Rabe's 1918 N
> b -
ii) Resolution A (];’ z protocol X ol
with D-benzoyltartrate | |
N~ N~

First entry to synthetic quinine
(considering Rabe’s protocol repeatable)

( They obtained 30 mg of synthetic D-quinotoxine
In view of the established conversion of quino-

toxine to quinine,'* with the synthesis of quino- 20
toxine the total synthesis of quinine was complete.



Mastering the C8-N strategy: Works supervised by Uskokovic

Researchers of the laboratories Hoffman-LaRoche
under the leadership of Milan R. Ukoskovic
Concentrated their efforts to mastering the C-8 N approach
gt ot 7 e e A

( Disclosed

a total synthesis of quinine
(close to a stereoselective one)

J

Series of total syntheses
based on the same approach

1970

n
>
"
=
-.,E_'rr 3
o~

i
=
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1) LDA, -78°C il OMe
M g O/ N DIBAL-H HO
= y 2) MeO,C | .
N | x Bz
X HI:, | I \
N N~
6-methoxylepidine N 85%
CONH, Resolved with

benzoyl D-tartaric acid

OMe OMe
BF3Et20 AcO N NaOAc, ‘%
> I >
AcOH AN H AcOH/benzene | S
1\} — N~
79%

96% 57:43
-BuOK, '0,,
. . -BuOH, DMSO
— Autooxidation (40%)
OMe with oxygen catalyzed OMe - —
il by t-BuOH . OMe
N\ @ Stereoselectivity (5:1) L N
Y Quinidine/Quine (1:1) N on
N~ 4 .

Quinidine Quinine



Uskokovic
Ar

Taylor, Martin
Uskokovic

Ar

Rabe
(Woodward)

Uskokovic
g 8
0
9
Ar OH
Uskokovic
Uskokovic
0= )IZI—R - o N—R
Ar v Ar X
X=Cl, Y=CI X=H, Cl
X=H, Y=Br

Different strategies for the C8-N closing

23



O . a 4 ()'

| 3. DIBAL-H (63 %) |
COPh »

Ouj H
P N
N. = N
Kev Ketone Other strategies used
g 1 by Ukoskovic et al.
PhMe, EtOH,
reflux

quinine (13 %)

quinidine (24 %)
epi-quinine (18 %)
epi-quinidine (18 %)

1. 3N H,SO, OMe % OMe %
2. (iPr);NCI

L]

COPh onl |
L 3 NaBH, YT e
| N 4. Ba(OH),, N~ |
MeOH
(34 %)
epimerization

during crystallizaticon

o L DIBAL-H 1 ‘1' -
guinine + quinidine = guininone + quinidinone

(33 %) (39 %)




N-benzoylmeroquinene derivative used in these last 70’s synthesis:
pure enantiomer form obtained by degradation of quinidinone

CO,H

HII.

125°C

25



First Totally Stereocontrolled Synthesis of (-)-Ouinine: Gilbert Stork

“The Woodward-Doering synthesis of homomeroquinene (cis-3-
vinyl-4-piperidinepropionic acid referred to above) deserves our
admiration, not because of its putative relationship to Rabe’s work,
but for its own sake. It is beautiful and inspiring ... the inspired

- His doubt: Did the three last steps
of the Woodward-Doering synthesis
really work ?

1946 ~ First Works of Stork on the synthesis of quinine:
Stereoselective synthesis of a dihydromeroquinene derivative

G. Stork, 1996
26



Possible Strategies for the Formation of the Bicyclic Pattern of Quinidine

2001

MeO
- )
OMe a) X
Deoxyquinine 3 ; X
| h X
N~
N
H
b) a) Classical C8-N approach
b) Stork’s approach
J J
. — ~
WIS N . 0™,
Meo\©\)ﬁ H MeO X
N N

27
Stork, G. et al. J. Am. Chem. Soc. 2001, 123, 3239-3242



Synthesis of the trisubstituted tetrahydropyridine

= * —
1) Et,NH/ AlMe; O LDA, -78°C, OTBS
- BN OTBS > EGN
79% OTBDPS 797
TBDPSO\/ TBSO
i) PPTS (0.3 eq), EtOH, 12h, — i) DIBAL-H, -78°C 2 —
i1) xylenes, reflux, 8 to 10h 0 o ii) PPh;=CHOMe g __ OH
MeO
93% (> 20:1) 75%
TBSO
\ TBSO
Ph;P/ DEAD R - — 5N HCI, 2 —
PhO),P(O)N ~
( )2 ( ) 3 el — N3 THF/CH2C12 OHC N3
c
95%, 78%

28



Svnthesis of the trisubstituted tetrahydropyridine

TBDPSO OTBDPS
Me OHC N; X
MeO
© XN LDA THF, -78°C OH "N,
N/ THE, -78°C NaHCO; aq. MeO N
70%
~
N
OTBDPS OTBDPS
DMSO0, (CICO), : N PPh; S
NEg THF, reflux N
0O N N
MeO X MeO X
— ~
N N
85% 81%
OTBDPS °

NaBH4

p

MeOH/THF MeO




Access to Deoxyquinine and Quinine

OTBDPS
X
"~
- HH HF/ CH3CN=
© N
P
N
OMe
CH;CN
reflux
| X
N~

68%

MsCl/ Py
CH,Cl, MeO
OMe
1) NaH/ DMSO
- N
2) O, ,
| Xy~ “OH
N~

78%

30



2004

Key Step: Modern and stereocontrolled version of the aminoepoxide cyclisation

Jacobsen’s retrosynthesis

2 = . .
OMe = ,%/l4 OMe (-m---- enantioselective
HE/ N 5 A conjugate addition
N
1 R S
| 'pc ® j{ """ -intramolecular Sy2
| X9 H —— N e
N~ N . asymmetric
dihydroxylation

PG= protecting group .
Suzuki cross couppling

MeO %
|
N
+
0
~ M_ o PG T copn
H N oPGT e N
'}I = | w3 Q\\ 3 _CN
|l Pa 8 "4 2 S
7 7
M~ H

conceptually established by Uskokovic
Jacobsen, E. N. et al. J. Am. Chem. Soc. 2004, 126, 706
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Et0, OEt O o o0

- g
0, °_%_ NP D A e
$=o Ho e CN
AN TBSO L CO,Me
=0 oTBS OTBS
Ph
84% (E/Z>50:1) 91%

a) n-BuLi, THF, -78°C-0°C
b) NCCH,CO,Me, (S,S)-Complex Al-Salen (5 mol%), t-BuOH, Cyclohexane, rt

{Bu

| tBu

tBu

__ Bu 2

32




O 0 O

E)]\Ph Raney Ni, H,, ) N'H
L CN Toluene/MeOH (3:1), I\
CO.Me 44 bar, 80°C, 12h CO,Me
OTBS" OTBS
89%o

, ~ Cis/trans 1:1.7
i) LDA, THF, -78°C

ii) 5% H,0/ THF, -78°CL_,  Gijs/trans 3:1

,H 1) LAH, THF _CBz
N 2) Cbz,0, Et,N, CH,CI, O
3) Column Chromat. i
L CO,Me 4)i) TPAP, NMO, CH,CL, tpso”
OTBS ii) PhyP*MeBr -, t-BuOK,
THF. 0°C 1) TBAF, THF

2) TPAP, NMO, CH,(Cl,
3) C1,CHB(pinacolate), CrCl,, Lil, THF

.CB
S

ZB

.B.
c O

v



O
CO,Et OMe
‘ |

N

H

quinine

a) 1) MeOH, rt, 12h
i1) Dowtherm A, 250°C, 30 min
b) Ph,PBr,, MeCN, MW, 170°C, 15 min

¢) Pd(OAc),, K,PO,, Ligand, H,O, THF, 16h, rt
d) 1) AD-mix-B, MeSO,NH,, t-BuOH, H,0, 0°C
2) MeCH(OMe),, PPTS (cat.), CH,Cl,
3)MeCOBr, CH,Cl,
4) K,CO;, MeOH
¢) 1) Et,AlICI, benzenethiol, 0°C-RT
2) MW, 200°C, 20 min (68%).




2004 ~ Kobayashi’s retrosynthesis

quinine

AcO” 1 OH | A

» Based on previous experience accumulated by Ukoskovic, Taylor and Martin and Jacobsen

« Special Features: Highly stereocontrolled synthesis of the meroquinene moiety
One of the key steps: Wittig Horner olefination

Starting material readily available
35

Kobayashi, Y. et al. Tetrahedron Lett. 2004, 45, 3783



2004 ~ Kobayashi’s synthesis:

Elaboration of the pepiridine moeity

CO,Me OTBDPS
AcO i) CHy(CO,Me), -Bu OK, Pd(PPh;), (cat.) i) LiAIH,
i) KI, DMF, 125°C ii) TBDPSCI, Im.
OH OH OH
70% 63%
OPi
OTBDPS TBDPSO TBDPSO W
CHO
Hg(OAC)Z (cat.), HQZCHOEt 190°C 1) NaBH4 _
g ii) ~-BuCOCl, Et;N, CH,Cl,
0
/) 66%
OPiv OPiv OPiv
OTBDPS
. TBDPSO TBDPSO
1) O3, n-PrOH, -78°C I, PPh. Im
> 2 "% I BnNH,,
ii) NaBH, —
OH I dioxane N
Bn
81% 88% 98%

Kobayashi, Y. et al. Tetrahedron Lett. 2004, 45, 3783 36



Kobayashi’s synthesis: Elaboration of the pepiridine moeity

TBDPSO OPiv

Bn

1) NaOEt, EtOH

TBDPSO
CICO,Et,

\J

TBDPSO

Y

2) 11) 0-(N02)C6H4SGCN, PBU3, THF
iii) 35% H,0,, THF

O= =
1) TBAF

f
-

2) PCC

Bz
80%

OPiv
"CO,Et
1)MeLi, occ 1 BDPSO Z
2) BzCl
N\
Bz

61%

37



Kobayashi’s synthesis: Attachments of the aryl moiety to the piperidine core

.Bz
O\\P/OEt O\I
N
OEt ‘ WY -

MeO N -Bz NaH,

\
—
T
oyl
=

82%

AD-mix-B, 0°C

MeC(OMe); PPTS (cat.), CH,Cl,

Y

TMSC], K2CO3’ MeOH

DIBAL-H, PhMe

160°C N
| Xy~ OH
N =~ 38

66% (2 steps)



The reproduction of the
three important steps provided by Rabe and Kindler

OMe

HO N

d-quinot - )
quinotoxine ( N-bromoquinotoxine (3)

| | a) NaOBr, 55% of crude pdt
b) EtONa, EtOH, 88% crude pdt

OMe OMe
N c) Al powder, NaOEt/EtOH
5% as the tartrate salt
= 0
N s |
b) quininone (4) c)
OMe | OMe |

39

guinidinone (5) quinidine (6)



Entry Reducing T[°C] Yield of isolated Yield of
conditions quinine/quinidine  quininell

76 DIBAL-H 20 72% 33%
benzene

pld NaBH,, EtOH 0 11% 4%

3 Al powder (new)! reflux trace trace
NaOEt, EtOH

4 Al powder (new)™ reflux.  30% (1.1:1) 16%
NaOEt, EtOH

5 Al powder + Al,O, reflux.  26% (1.1:1) 14 %
NaOEt, EtOH

6 Al powder (aerated)!  reflux 24% (1.1:1) 13%
NaOEt, EtOH

7 Al powder reflux. 8% (1.2:1) 4%
MeOH, NaOMe

8 Al powder (sonication) reflux 22% (1.1:1) 12%
NaOEt, EtOH

9 Al powder, reflux.  32% (1:1.2) 15%
Na(QiPr), iPrOH

10 Al(OiPr),, iPrOH reflux  28% 16%

11 LiAIH,, ether —78 45% trace

12 LiAIH,, ether 0 59% trace

13 LiAlH,, ether 20 56 % trace

14 LiAIH,, ether! 0 40% (1:1.5) 16%

[a] Experiment from Ref.[11]. [b] General reaction conditions here.
[c] Bottle #1. [d] Bottle #2. [e] After epimerization. [f] Calculated based
on 'H NMR spectra.



Conclusion

A fascinating and long quest:
-For the discovery of the structure

-For the development of the different syntheses
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