

Iminium-Allenamine Cascade Catalysis: One-Pot Access to Chiral 4*H*-Chromenes by a Highly Enantioselective Michael-Michael Sequence

Xinshuai Zhang, Shilei Zhang, and Wei Wang*

Angew. Chem. Int. Ed., 2010, Early view

Christophe Allais

RCC 28.10.2010

A new activation mode...

Well-known catalysis via iminium-enamine activation of enals

This work: unprecedented iminium-allenamine activation of alkynals

Application to the synthesis of chiral 4*H*-chromene derivatives

Ph OTBDMS
$$C_2N$$
 O C_2N O C_2N O C_3N O C_4 C_4 C_5 C_4 C_5 C_4 C_5 C_4 C_5 C_5 C_5 C_5 C_5 C_6 C_6 C_7 C_8 C_9 C_9

About the literature...

Single-step conjugate addition with alkynones M. Shibasaki *and co-workers*, *ACIEE*, **2009**, 2218.

$$Ar = CO_{2}Bu^{t} + CO_{2}Bu^{t} +$$

Single-step conjugate addition with acetylenic esters K. Maruoka *and co-workers*, *JACS*, **2007**, 1038.

Only one example of asymmetric

Synthesis of 4*H*-chromene derivatives

N. Miyaura *and co-workers*, *Adv. Synth. Catal.* **2007**, 1759.

89-94 % yield 95-99 % ee

Optimization and mechanism

Jørgensen's catalyst derivatives

Entry	Catalyst	Solvent	t [h]	Yield [%] ^[b]	ee [%] ^[c]
1	I	CH ₂ Cl ₂	1	95	97
2	П	CH_2Cl_2	1	93	98
3	Ш	CH_2Cl_2	1	92	98
4	IV	CH_2Cl_2	1	90	96
5	V	CH_2Cl_2	1	91	66
6	Ш	toluene	1	94	99
7	Ш	DCE	1	92	98
8 ^[d]	Ш	toluene	4	97	> 99

[d] 0 °C, 15 mol% III

Proposed mechanism

cat.

Scope of the reaction

electron donating

electron withdrawing

RCC 28.01.2010 4

Conclusion

- First chiral iminium-allenamine cascade catalysis: oxa-Michael/Michael process
- Application to the synthesis of biologically interesting 4*H*-chromene derivatives
- High yields and excellent enantioselectivities
- Versatile nitro and aldehyde functionalities (for further elaboration)
- Broad substrate scope successfully employed
- Formation of one C-O bond, one C-C bond and one new stereogenic center

New and original proposed iminium—allenamine activation mode with potent applications in the development of new organocatalytic enantioselective cascade reactions