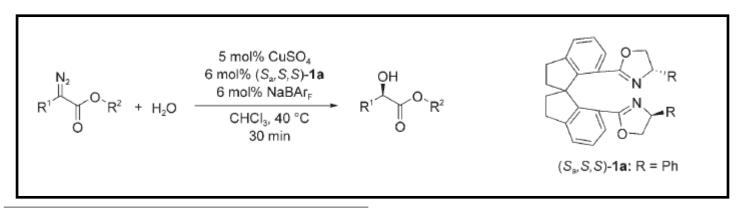


published online: 9 may 2010

Shou-Fei Zhu, Yan Cai, Hong-Xiang Mao, Jian-Hua Xie and Qi-Lin Zhou*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University Tianjin 300071, China

Transition-metal-catalysed insertion reaction starting with diazo compounds



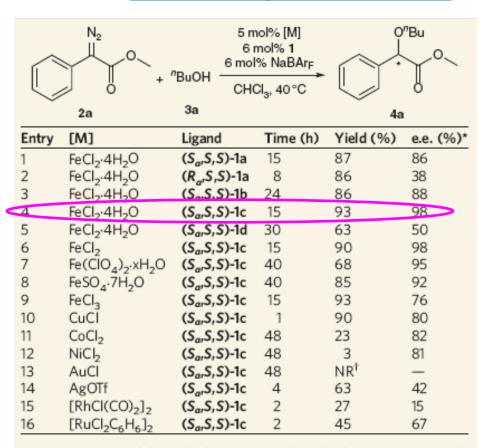
Efficient tool for the construction of C-X bonds under mild reaction conditions

Ferris, L. Haigh, D. Moody, C. J. Tetrahedron Letters, 1996, 37, p.107-11.

Bulugahapitiya, P. Landais, Y. Parra-Rapado, L. Planchenault, D. Weber, V. *J. Org. Chem.* **1997**, *62*, p. 1630-41.

Maier, T. C. Fu, G. C. J. Am. Chem. Soc. 2006, 128, p. 4594-5.

Entry	R ¹	R^2	Product	Yield [%]	ee [%]
1	Ph	Me	3 a	91	90 (R)
2	Ph	Et	3 b	91	88 (R)
3	Ph	<i>i</i> Pr	3 c	81	86 (R)
4	4-MeC ₆ H₄	Me	3 d	83	92 (R)
5	4-PhC ₆ H₄	Me	3 e	87	92
6	4-FC ₆ H₄	Me	3 f	90	92 (R)
7	4-CIC ₆ H ₄	Me	3 g	83	92 (R)
8	4-BrC ₆ H₄	Me	3 h	86	91 (<i>R</i>)
9	3-MeC ₆ H ₄	Me	3 i	87	92
10	3-MeOC ₆ H₄	Me	3 j	89	91 (<i>R</i>)
11	3-FC ₆ H₄	Me	3 k	85	89
12	3-ClC ₆ H ₄	Me	31	88	88 (R)
13	3-BrC ₆ H₄	Me	3 m	92	88
14	$3,4-Cl_2C_6H_3$	Me	3 n	91	94 (R)
15	2-MeC ₆ H₄	Me	3 o	81	89
16	2-MeOC ₆ H₄	Me	3 p	71	50 (R)
17	2-ClC ₆ H ₄	Me	3 q	90	36 (R)
18	2-naphthyl	Me	3 r	76	90 (R)
19	3-thienyl	Me	3 s	70	90
20	Me	Bn	3t	78	78 (R)

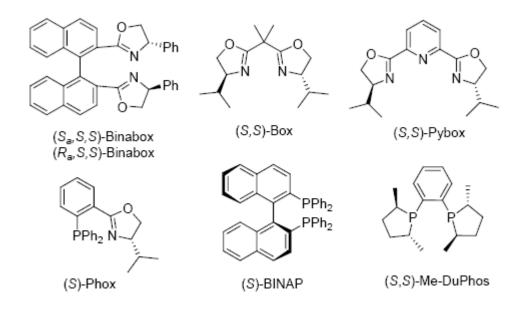

Yields 70-91%, ee=50-94%

Zhu S-F. Chen C. Cai Y. and Zhou Q-L. *Angew. Chem.* **2008**, *47*, p. 932-4.

Metal and ligand evaluation:

$$R^1$$
 $O R^2 + R^3OH$
 $P O R^2 + R^3OH$
 $P O R^2$
 $O O R^2$
 $O O O R^2$

$$(S_a, S, S)$$
-1a: R = Ph
 (S_a, S, S) -1b: R = Bn
 (S_a, S, S) -1c: R = *i*-Pr
 (S_a, S, S) -1d: R = *t*-Bu

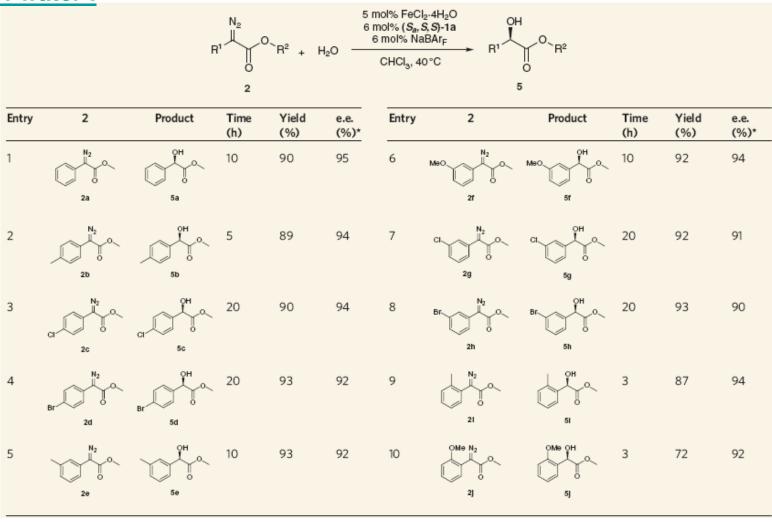


Reaction conditions: [M]/1/NaBAr_F/2a/3a = 0.015/0.018/0.018/0.3/0.45 mmol, in 4 ml CHCl₃ at 40 °C. NaBAr_P sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate.

^{*}Determined by HPLC (high-performance liquid chromatography) using a Chiralcel OD-H column.

†NR, no reaction.

Ligand investigation for O-H insertion of Butanol:



entry	ligand	time (h)	yield (%)	ee (%) ^b
1	none	4	90	Rac
2	(S,S)-Box	40	56	-16
3	(S_{a},S,S) -Binabox	10	90	13
4	(R_a,S,S) -Binabox	40	27	29
5	(S,S)-Pybox	40	60	-9
6	(S)-Phox	40	65	Rac
7	(S)-BINAP	40	$NR^{\mathfrak{c}}$	
8	(S,S)-Me-DuPhos	40	NR	

Screening of alcohols:

Entry	R³OH	Product	Time (h)	Yield (%)	e.e. (%)*	Entry	R ³ OH	Product	Time (h)	Yield (%)	e.e. (%)*
1	nBuOH, 3a	o 4a	15	93	98	9	зі	O Ph O O	15	94	98 (77)
2	MeOH, 3b	4b	10	85	96 (69)	10	Me ₃ SI OH	Me ₃ Sl V AJ	15	91	93 (90)
3	EtOH, 3c	9 4c	10	88	95 (87)	11	OH 3k	4k	48	86	89 (27)
4	CH ₃ (CH ₂) ₈ CH ₂ OH, 3d	H ₈ o	15	92	95	12	зі	41	3	92	93
5	OH 3e	4e	20	90	94	13	Ph OH 3m	Ph O	12	90	95
6	эт	41	20	92	98	14	3n OH	dn dn	24	88	95
7	> —он зg	49	15	95	98 (68)	15	30 OH	40	24	91	95
8	OH 3h	o o o	10	95	99						

Insertion of water:

Insertion of water (continued):

Entry	2	Product	Time (h)	Yield (%)	e.e. (%)*	Entry	2	Product	Time (h)	Yield (%)	e.e. (%)*
11	F N ₂ 0 0 2k	F OH O	3	91	90	15	CI N ₂	CI OH OF STREET	3	93	88
12	CI N ₂	CI OH	2	92	95	16	N ₂	OH 50	10	90	91
13 [†]	CI N ₂	CI OH	6	90	92	17	N ₂	SP OH	12	66	92
14	Br N ₂	Br OH OH	3	94	94	18	N ₂ O Bn 2q	OH Bn 5q	20	80	76

Application in total synthesis:

Contemporary Drug Synthesis, J. Li et al. Wiley Interscience, 2004:

 $\rm K_2CO_3$ 30%, DCM, $\rm H_2O$ 70°C, 3.5 H , 45%

Conclusion

- For the first time enantioselectivities obtained with this O-H insertion reaction using iron catalyst surpass those obtained with other transition-metal catalyst.
- A catalyst stable enough to handle in air without loss of either reactivity or enantioselectivity
- Iron: low price, environmentally benign and ready available
 A ideal alternative to precious metal for catalytic asymmetric synthesis
 A new "Greener catalyst"