


### Atroposelective Organocatalysis





Science 2010, 328, 1251

**RCC- Kishor Mohanan** 

Dynamic Kinetic Resolution of Biaryl Atropisomers via Peptide-Catalyzed Asymmetric Bromination Scott J. Miller and co-workers Yale University

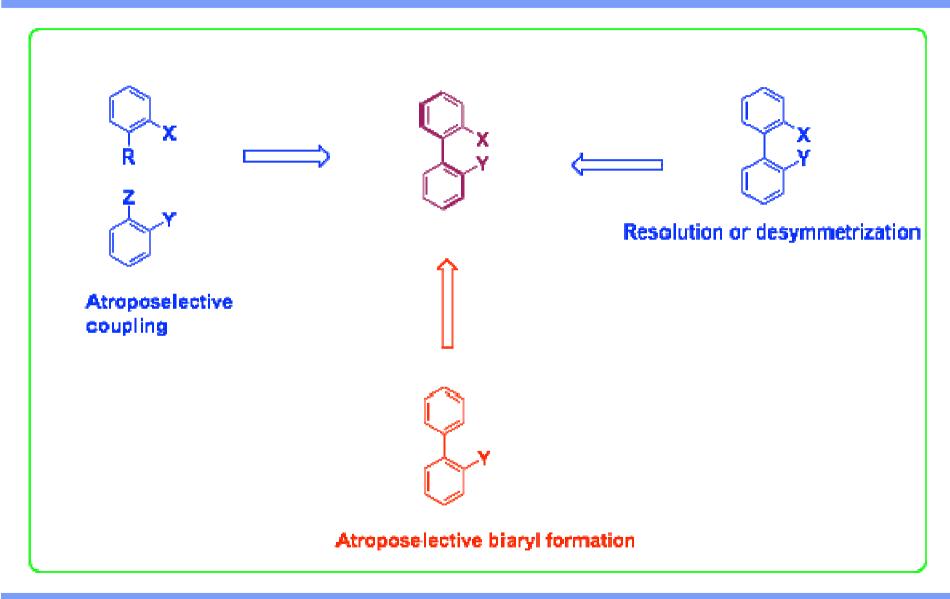


## Atropisomers...



**Atropisomers** are stereoisomers resulting from hindered rotation about single bonds where the steric strain barrier to rotation is high enough to allow for the isolation of the conformers




### Stelle Naturally occuring Atropisomeric biologically active molecules





### Atroposelective reactions..







7 kcal/mol

## The present reaction



**Rotation energy barrier** 

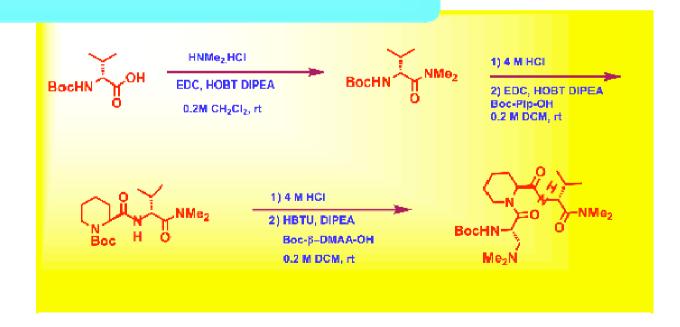
30 kcal/mol



## The present reaction



80% Isolated Yield 97:3 Enantiomer Ratio








## Synthesis of starting material

# Catalyst synthesis





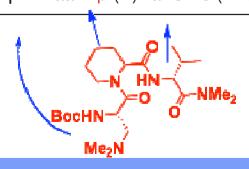




| (±)-1a-d | .R<br>OH                     | NB<br>chloro | yst <b>4</b> (10 mol %<br>S (300 mol %)<br>oform/3% MeO<br>M in substrate<br>18 h | H R                  | .ОН<br>`Br <i>i</i> +1 о Ме |
|----------|------------------------------|--------------|-----------------------------------------------------------------------------------|----------------------|-----------------------------|
| Entry    | R                            |              | Yield (%)                                                                         | Enantiomer Ratio (E. | 1 \-Me                      |
| 1        | CO <sub>2</sub> Me (1        | a)           | 80                                                                                | 57.5:42.5            | BocHN                       |
| 2        | CONHBn (                     | 1b)          | 80                                                                                | 65.0: 35.0           | , ivide                     |
| 3        | NO <sub>2</sub> (1c          | )            | 80                                                                                | 52.0: 48.0           | 1416514                     |
| 4        | CO <sub>2</sub> H ( <b>1</b> | d)           | 90                                                                                | 75.0: 25.0           | Catalyst <b>4</b>           |

<sup>\*</sup>The major atropisomer of **3d** was assigned to the *R*-configuration by X-ray analysis.




### Catalyst screening...



Catalyst (10 mol %) NBS (300 mol %) chloroform / 3% MeOH (0.01 M in substrate) 18 h

| Entry | Catalyst                                                  | Yield (%) | E.r.      |
|-------|-----------------------------------------------------------|-----------|-----------|
| 1     | Boc-β-Dmaa-Pro-(D)Val-( $R$ )- $\alpha$ Mba ( <b>4</b> )  | 90        | 75.0:25.0 |
| 2     | Boc-β-Dmaa-Pip-(D)Val-( $R$ )- $\alpha$ Mba (5)           | 87        | 90.0:10.0 |
| 3     | Boc-β-Dmaa-Pip-(D)Phe-( $R$ )- $\alpha$ Mba ( <b>6</b> )  | 73        | 86.5:13.5 |
| 4     | Boc-β-Dmaa-Pip-(D)Tle-( $R$ )- $\alpha$ Mba ( $7$ )       | 85        | 89.0:11.0 |
| 5     | Boc-β-Dmaa-Pip-(D)lle-( $R$ )- $\alpha$ Mba (8)           | 65        | 82.5:17.5 |
| 6     | Boc-β-Dmaa-Pip-(L)Val-( $R$ )- $\alpha$ Mba (9)           | 95        | 75.0:25.0 |
| 7     | Boc-β-Dmaa-Pip-(D)Val-( $S$ )- $\alpha$ Mba ( <b>10</b> ) | 80        | 75.0:25.0 |
| 8     | Boc-β-Dmaa-Pip-(D)Val-NMe <sub>2</sub> ( <b>11a</b> )     | 90        | 92.0:8.0  |
| 9     | Boc-β-Dmaa-Pip-(D)Val-OMe ( <b>11b</b> )                  | 90        | 65.0:35.0 |

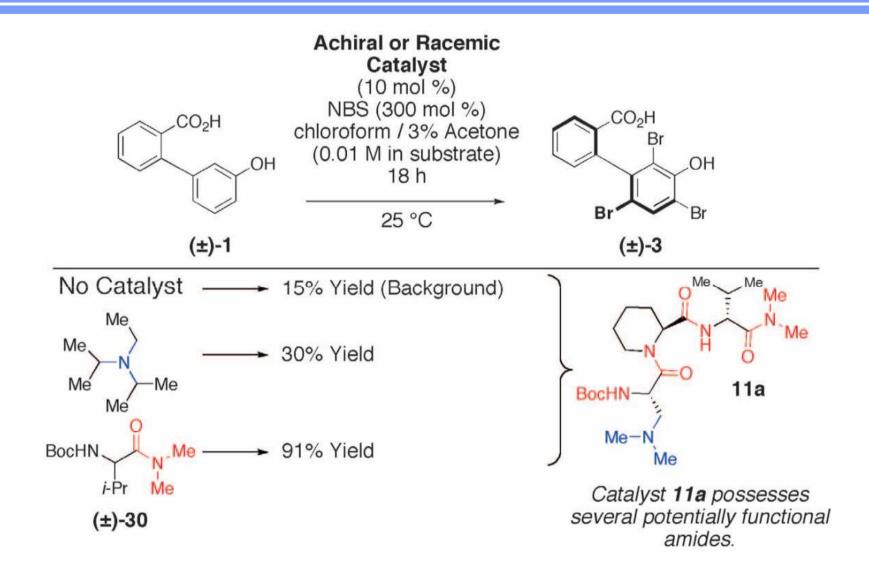
Lead Catalyst 11a





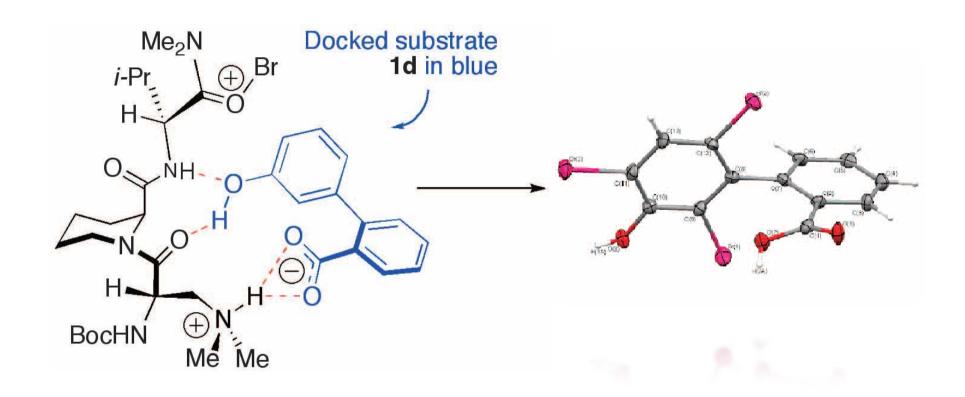
### Substrate scope...




| Entry          | Racemic Starting Mater                | rial Product                          | Yield (%)   | E.r.     | Entry | Racemic Starting Material                     | Product                             | Yield (%)       | E.r.      |
|----------------|---------------------------------------|---------------------------------------|-------------|----------|-------|-----------------------------------------------|-------------------------------------|-----------------|-----------|
| 1              | CO <sub>2</sub> H<br>(±)-1d OH        | 3d Br OH                              | 80          | 97.0:3.0 | 6     | F (±)-20 OH                                   | CO <sub>2</sub> H<br>Br<br>OH<br>Br | 70              | 97.0:3.0  |
| 2              | O <sub>2</sub> N CO <sub>2</sub> H OH | O <sub>2</sub> N CO <sub>2</sub> H Br | рн 85<br>sr | 97.0:3.0 | 7     | (±)-22 OH                                     | CO <sub>2</sub> H<br>Br<br>OH<br>Br | 65              | 96.5:3.5  |
| 3 <sub>C</sub> | O <sub>2</sub> N (±)-14 OH            | 15 Br                                 | рн 75<br>sr | 96.5:3.5 | 8     | Me CO <sub>2</sub> H OH                       | Me CO <sub>2</sub> H Br OH          | 85              | 87.0:13.0 |
|                | eO (±)-16 OH                          | 17 <sub>Br</sub>                      | DH 70<br>Вr | 96.0:4.0 | 9     | Ph N OH Ph                                    | Br Br Br Br OH Me                   | 77 <sup>*</sup> | 85.0:15.0 |
| М<br>5         | CO <sub>2</sub> H<br>(±)-18           | 19                                    | 0H 80<br>Br | 94.0:6.0 | 10    | (±)-26<br>O CO <sub>2</sub> H<br>OH<br>(±)-28 | 27 Br Br OH 29 Br OH                | 70              | 95.0:5.0  |
|                |                                       |                                       |             |          |       | .,                                            | DI DI                               |                 |           |

<sup>\* 400</sup> mol % of NBP.




#### Mechanistic rationale













### Conclusion



Synthesis of optically enriched biaryls using enantioselective catalysts may enable improved access to the atropisomeric materials. This approach may also stimulate research involving interconverting axially chiral compounds.