

One-Pot Synthesis of α-Amino Acids from Imines through CO₂ Incorporation: An Alternative Method for Strecker Synthesis

NHBoc
$$CsF$$
, DMF , rt, 5 min CH_2N_2 OMe OMe

Tsuyoshi Mita, Jianyang Chen, Masumi Sugawara and Yoshihiro Sato Angew. Chem. Int. Ed., **2010**, *49*, Early view

Synthetic strategies for α -amino acids from imines

Classical method: Strecker synthesis

$$\begin{bmatrix}
N & R^2 \\
R^1 & CN
\end{bmatrix}$$
Cyanation
$$\begin{bmatrix}
HN & R^2 \\
R^1 & CN
\end{bmatrix}$$

$$\frac{Hydrolysis}{H_3O^+}$$

$$\Delta$$
R1 CO₂H
$$\alpha$$
-amino nitrile

- → This method has some pratical drawbacks :
 - The use of highly toxic hydrogen cyanide or an alkali metal cyanide or TMSCN.
 - The need for hydrolysis in strongly acidic media at a high temperature

Their work: replacement of cyanide by CO₂ and reversal of polarity on the imino central carbon atom by the use of stannyl anion.

Investigation of carboxylation using various fluoride sources.

[a] Yields were determined by using ¹H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. The values in parentheses represent the yields of isolated product. [b] The reaction was performed at 110°C. TBAT = Tetrabutylammonium triphenyldifluorosilicate.

One-pot synthesis of α -amino acids

Table 2: One-pot synthesis of α -amino acids.

					· ·	<u>f.</u>	
Entry	Substrate	Yield [%] ^[a]		Entry	Substrate	Yield [%] ^[a]	
·		6	7	•		6	7
1 2 ^[b]	NHBoc Bs 1a	81 (78) 28	7 36	8 ^[d]	Me NHBoc Bs	74 (57)	8
3	F NHBoc Bs	61 (52)	12	9	MeO Bs	88 (79)	8
4	NHBoc F Bs	62 (46)	19	10	NHBoc Bs 1i	73 (66)	15
5	NHBoc Bs 1d	79 (63)	11	11	NHBoc Bs 1j	65 (62)	14
6	NHBoc Bs	64 (51)	17	12	NHBoc S Bs	49 (46)	8
7 ^[c]	NHBoc Bs 1f	53 (47)	6	13 ^[e]	NHBoc Bs	62 (55)	6

[a] Yields were determined by using 1H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. The values in parentheses represent the yields of isolated product. [b] Imine **2a** was used as a substrate and 7% of benzaldehyde was formed. [c] 9% of α -amino stannane **3 f** remained. [d] 3% of α -amino stannane **3 g** remained. [e] The reaction was performed at 110°C. Bs = benzenesulfonyl.

Conclusion

Novel One-pot process for the synthesis of α -amino acids from imine equivalents using CO_2 gas as a carbon source.

NHBoc
$$CsF$$
, DMF , rt, 5 min CH_2N_2 OMe OMe

Three successive reactions (imine formation, stannylation, and carboxylation) proceed in the same flask

Fluoride source CsF plays a different role for each step