
Optically Active Thiophenes: Organocatalytic One-pot Methodology

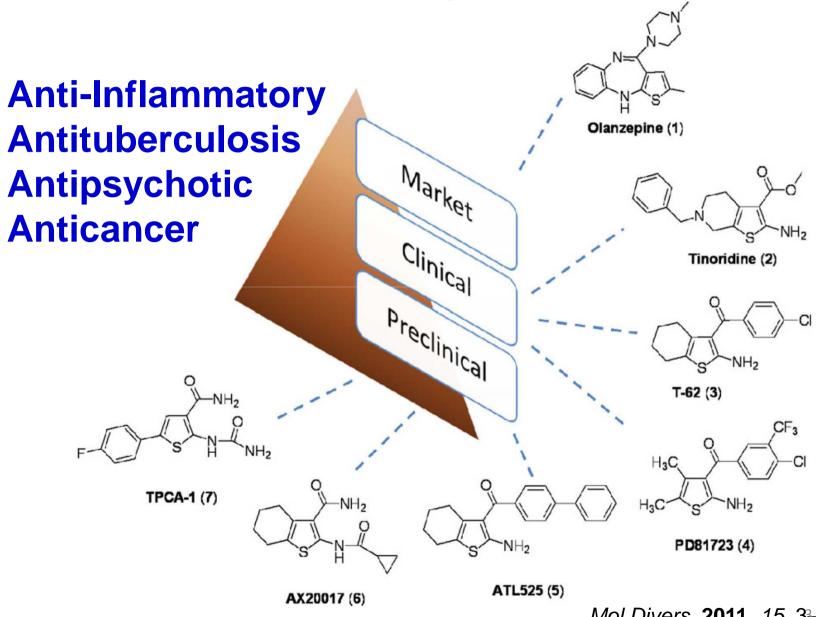
Org. Lett. **2012**, 10.1021/ol203237r

Lars Krogager Ransborg Łukasz Albrecht Christian F. Weise Jesper R. Bak Karl Anker Jørgensen

Jaime Gálvez

Pall-Knorr Thiophene Synthesis

Organocatalyzed Synthesis

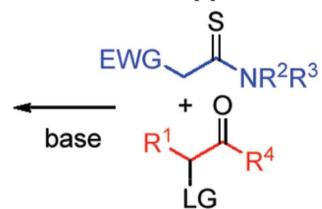

J. Org. Chem. 2011, 76, 8009-8014

Metal-Catalyzed Synthesis

$$R = \text{electron-donating or -withdrawing groups} \\ X = \text{Br or Cl} \\ X \\ + \text{NuH} \\ + \text{NuH} \\ \frac{\text{Pd(OAc)}_2 \text{ (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{K}_2\text{CO}_3, \text{CO (150 psi)}} \\ 110 \text{ °C, 15 h} \\ 15 \text{ examples} \\ 24-73\% \text{ yields} \\ X = \text{Br or Cl} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{NuH} \\ \frac{\text{Ruphos (4 mol \%)}}{\text{Ruphos (4 mol \%)}} \\ + \text{Ruphos (4 mol \%)} \\ + \text{Rup$$

Org. Lett. 2011, 13, 2868-2871

2-aminothiophenes


Mol Divers, **2011**, *15*, 3-33

Synthesis of 2-aminothiophenes

Gewald Synthesis

- Elemental sulfur as sulfur source
- Limited to primary amines (R² = R³ = H)
- Well studied

Thioamide approach

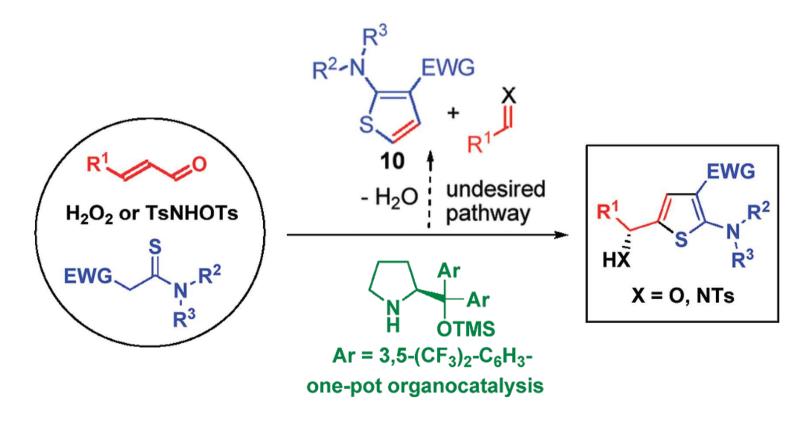
- Thioamides as sulfur source
- Requires LG
- Limited recognition

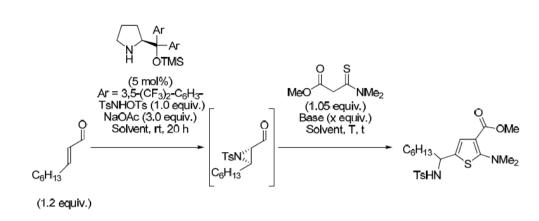
Mol Divers. **2011**, *15*, 3–33 *ARKIVOC* **2010**, 209-246

$$O_{2}N \xrightarrow{S} NR^{1}R^{2} \xrightarrow{BrCH_{2}COR^{3}} C_{6}H_{6} / DBU / 60^{\circ}C \xrightarrow{R^{3}} NO_{2} \\ (35-98\%)$$

$$R^{3}= Me, Ph, 4-NO_{2}C_{6}H_{4} NR^{1}R^{2} = -N \text{ or } -N$$

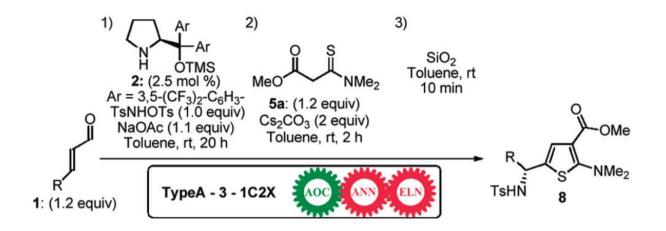
$$(PhCH_{2})EtO_{2}C$$

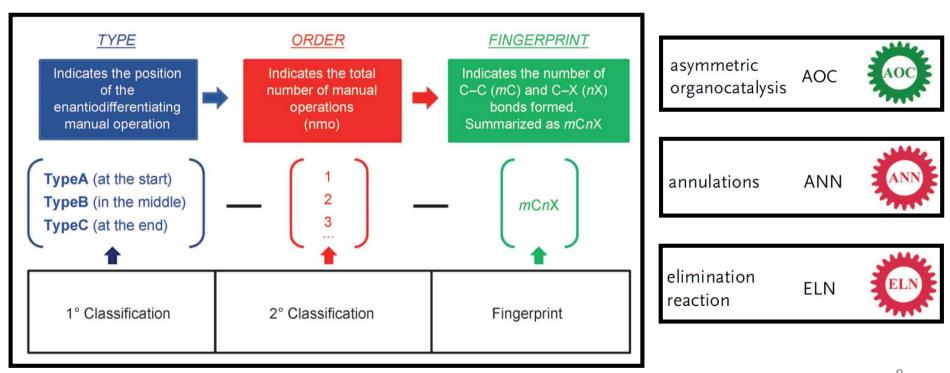

Chem. Rev. 2003, 103, 197-227

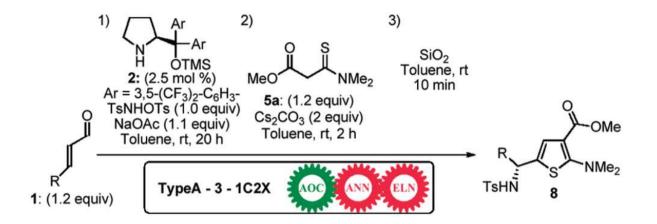

Limitation

- Availability of asymmetric annulative strategies.
- Strategies based on functionalization of prochiral heteroaromatic starting materials.

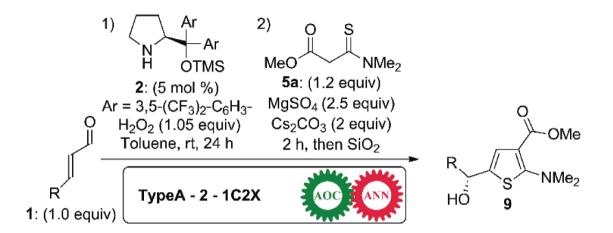
Challenge


- A direct strategy for the formation of optically active polysubstituted thiophenes from acyclic precursors.
- Overcome the possible and undesired elimination pathway



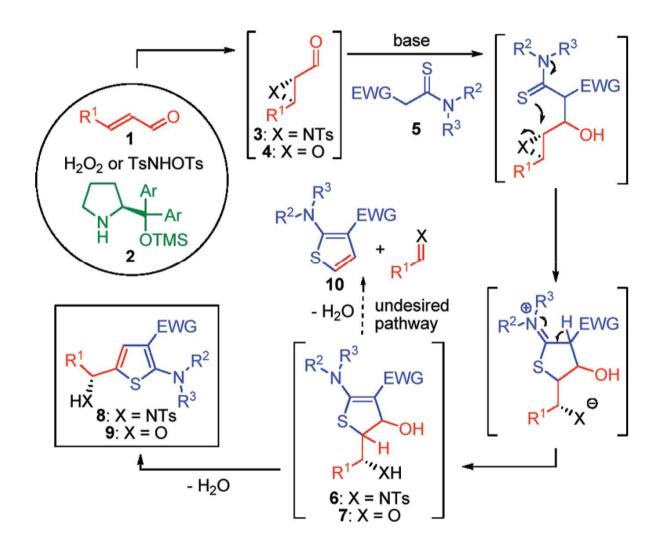

entry	base (equiv)	solvent	temperature	time	aziridine	yield [%]	ee
			[°C]	[hours]	conversion [%] ^[a]	(NMR-yield [%] ^[b])	[%]
1	DBU (1.0)	CH ₂ Cl ₂	40	22	94	- (41)	-
2	MTBD (1.0)	CH ₂ Cl ₂	40	22	>95	- (48)	-
3	DBU (1.0)	toluene	60	2.5	>95	- (37)	-
4	-	toluene	60	22	30	- (27)	-
5	Cs_2CO_3 (1.0)	toluene	60	22	>95	55 (71)	-
6	Cs_2CO_3 (2.0)	toluene	60	2	>95	- (77)	-
7	Cs_2CO_3 (3.0)	toluene	60	2.5	>95	67 (86)	95
8	Cs_2CO_3 (3.0)	CH ₂ Cl ₂	40	2	>95	- (decomp)	-
9	K_2CO_3 (3.0)	toluene	60	2.5	>95	- (decomp)	-
10	DIPEA (3.0)	toluene	60	22	92	- (38)	-
11	CsOH·H ₂ O (3.0)	toluene	60	2.5	>95	42 (90)	95
12	K_3PO_4 (3.0)	toluene	60	2.5	75	- (50)	-
13	$Cs_2CO_3 (3.0)^{[c]}$	toluene	60	2	>95	58 (83)	-
14	CsOAc (3.0) ^[c]	toluene	60	22	>95	- (40)	-
15	Cs_2CO_3 (3.0) [d]	toluene	60	2	>95	- (71)	-
16	Cs_2CO_3 (2.0) [d]	toluene	60	2	>95	70 (75)	-
17	$Cs_2CO_3 (2.0)^{[e]}$	toluene	60	2	>95	73 (87)	-
18	$Cs_2CO_3 (2.0)^{[e][f]}$	toluene	60	2	>95	72 (91)	94
19	Cs_2CO_3 (2.0) [e][f]	toluene	rt	2 ^[g]	>95	72 (91)	94
20	Cs ₂ CO ₃ (2.0) [e][f]	toluene	rt	2 ^[h]	>95	91 (91)	96

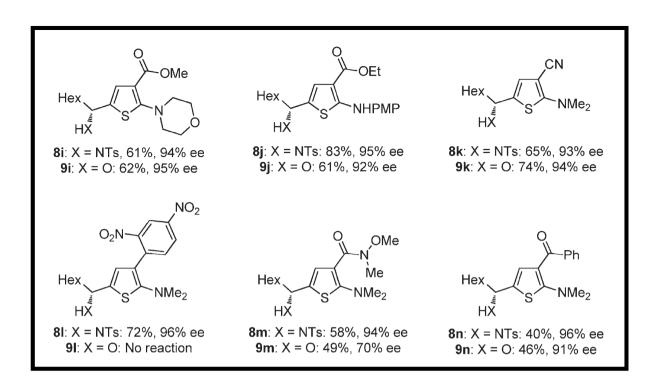
[a] Determined by ¹H NMR [b] NMR-yield calculations based on product to nucleophile ratio [c] 1 eq NaOAc in aziridination step [d] 1.5 equiv nucleophile used [e] 1.2 equiv nucleophile used [f] 2.5 mol% catalyst used [g] Followed by 30 min reaction with AcOH [h] Followed by 30 min reaction with SiO₂

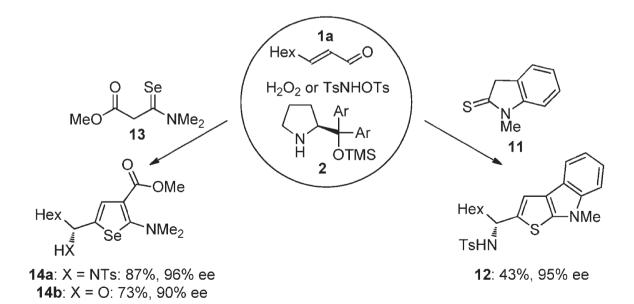


Angew. Chem. Int. Ed. **2011**, 50, 8492 – 8509

Table 1. Aldehyde Scope for the Formation of Aminoalkylthiophenes 8^a


entry	R	product	yield [%]	ee ^b [%]
1	Hex	8a	91	96
2	Pr	8b	83	95
3	$i \mathrm{Pr}$	8c	92	93
4^c	Me	8 d	80	89
5	(E)-Hex-3-enyl	8e	81	95
6	(Z)-Hex-3-enyl	8f	60	94
7	$\mathrm{CH_{2}OTBDMS}$	8g	82	96
8	$\mathrm{CH_{2}CH_{2}Ph}$	8 h	83	92


Table 2. Aldehyde Scope for the Formation of Hydroxyalk-ylthiophenes **9**^a


entry	R	product	yield [%]	ee ^b [%]
1	Hex	9a	75	94
2	\Pr	9 b	74	94
3	iPr	9c	61	98
4^{c}	Ph	9 d	33	86
5	(E)-Hex-3-enyl	9e	73	96
6	(Z)-Hex-3-enyl	9f	40	92
7	$\mathrm{CH}_2\mathrm{OTBDMS}$	9g	71	96
8	$\mathrm{CH_{2}CH_{2}Ph}$	9h	72	94

Organocatalytic One-Pot Mechanism

J. Am. Chem. Soc. **2005**, 127, 6964-6965 Acc. Chem. Res. **2012**, 10.1021/ar200149w

An efficient and highly stereoselective one-pot methodology for the synthesis of optically active thiophenes, thieno[2,3-b]indoles, and selenophenes has been described.

Highly enantioselective amino-catalyzed epoxidation or aziridination reaction, combined with a ring annulation, to afford the target compounds.

These reactions can be carried out under mild reaction conditions and are based on the application of convenient, easily obtainable reagents.

Wide functional group tolerance resulting in the high substitution diversity of the final aromatic framework.

"Inquisitive young people are the most important element in chemistry research" Professor Karl Anker Jørgensen

Merci Beaucoup! Thank You! Gracias!

