

Ruthenium Sulfonamide-Catalyzed Direct Dehydrative Condensation Of Benzylic C-H Bonds With Aromatic Aldehydes

S. Takemoto,* E. Shibata, M. Nakajima, Y. Yumoto, M. Shimamoto, and H. Matsuzaka*, J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b08863

Properties and Utilization of Stilbenes and Distyrylbenzene Derivatives

Likhtenshtein, G. Stilbenes : Applications in Chemistry, Life Science and Materials Science; Wiley-VCH: Weinheim, 2010.

C. Li, M. Hanif, X. Li, S. Zhang, Z. Xie, L. Liu, B. Yang, S. Sua and Y. Ma J. Mater. Chem. C, 2016, 4, 7478-7484. 22/11/2016

Background

A. J. Hudson, S. Tamura, M. B. Grieve, T. Richardson, J. E. Wong, D. W. Bruce, J. Mater. Chem. 1995, 5, 1867.

> Expensive oxidants such as Ag(I) or Cu(II) salts in

stoichiometric amounts

A. Bechtoldt, C. Tirer, K. Raghuvanski, S. Warratz, C. Kornhaaß, L. Lutz Ackermann, *Angew. Chem. Int. Ed.* **2016**, *55*, 264 – 267. 22/11/2016

Werner E. W., Sigman M. S. J. Am. Chem. Soc. 2011, 133, 9692.

This work

> Direct dehydrative condensation of the benzylic C-H bonds of toluene and *p*-xylene with aromatic aldehydes

First catalytic version

> Novel cooperative catalysis of a cationic Cp*Ru(ŋ⁶-arene) complex and a sulfonamide anion NHTs⁻

Active Catalyst Components

Entry	ML _n	X -	Base	Reaction time	Yield (%)	Entry	ML _n	X -	Base	Reaction time	Yield (%)
1		NHTs ⁻			50	11	CpRu⁺				8
2		OTf ⁻	None		0	12	Cp*Fe⁺	PF_6^-			8 5 9 0
3					0	13	CpFe⁺			10 h	9
4	Cp*Ru⁺		KNHTs	4 h	40	14	(PCP)Ru⁺	OTf ⁻	KINHIS	19 N	
5		Cl⁻	KNHMs		24	15	Mn(CO) ₃ +	PF_6^-			0
6			KNMeTs		2	16	Cr(CO) ₃	None			8 5 9 0
7			KN ^t BuTs		Z						

Active Catalyst Components

Primary sulfonamide anions play an essential role: Base and facilate the C-C bond formation by a tosylimine intermediate

Optimization of Reaction Conditions

Entry	x	T °C	Time (h)	Additive	Conv. (%)	Yield (%)
1	10 5 2,5	130		None	88	50
2		150	4		100	72
3					71	58
4				MS 4Å	70	70
5			24		100	98
6					57	51

Scope of Aromatic Aldehydes

Dehydrative Condensation of *p*-xylene with Aromatic Aldehydes

Dehydrative Condensation of *m*-xylene with p-chlorobenzaldehyde

> Direct dehydrative condensation of the benzylic C-H bonds of toluene and *p*-xylene with aromatic aldehydes

First catalytic version by a new cooperative catalyst cationic Cp*Ru(ŋ⁶-arene) complex and a sulfonamide anion NHTs⁻

- > Highly atom-economical access to relatively simple stilbene and *p*-distyrilbenzene derivatives
- > Only water byproduct
- > Two roles of sulfonamide anion