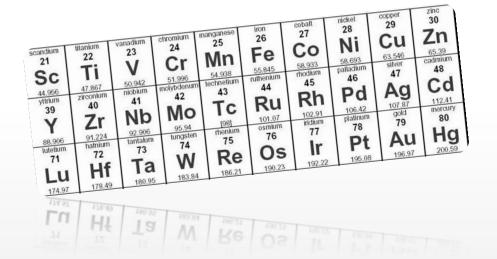


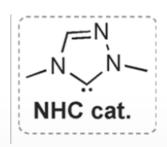
Cooperative NHC/Pd-Catalyzed Enantioselective Umpolung Annulations


C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc., **2016**, ASAP, DOI: 10,1021/jacs.6b04364

RCC Seminar – Mylène ROUDIER – June 24th, 2016

Dual catalysis emergence

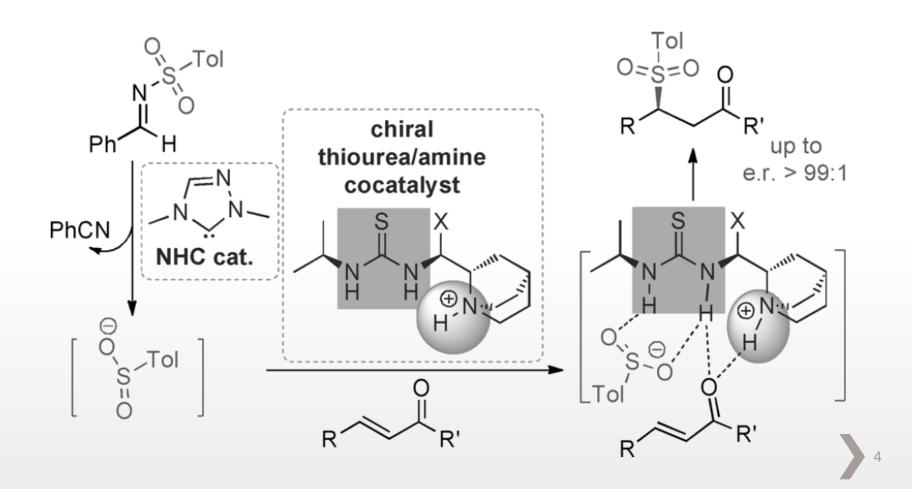
Series of new enantioselective transformations by:



Dual catalysis emergence

NHCs are recognized to be: _ a very powerfull organocatalyst for accessing to umpolung reactivity

_ a good ligand for transition metal

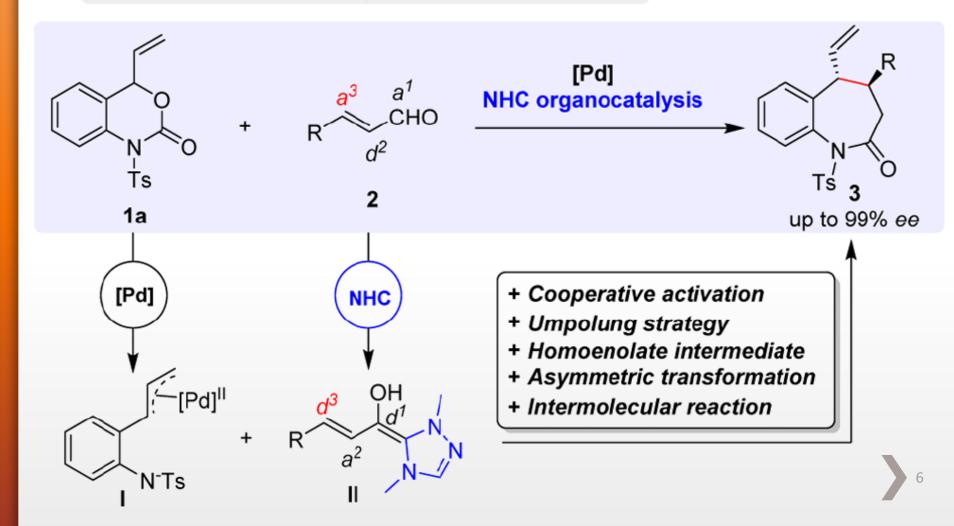


Major challenge: cooperative transition metal/NHC organocatalysis

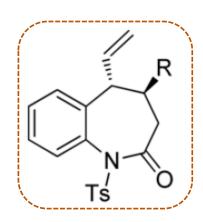
Background

Cooperative NHC/Thiourea/Tertiary amine multicatalysis Angew. Chem. Int. Ed., **2013**, 52, 12354

Background


Cooperative NHC/Pd dual catalysis Chem. Sci., **2014**, 5, 4026

A Pioneering Example: NHC/transition metal cooperative catalysis



This work

B Cooperative enantioselective *umpolung* annulation

Benzazepines moiety

Benzazepines moiety

Key structural motifs in biologically active natural products and pharmaceuticals

Tolvaptan

Zilpaterol

Benzanepril

entry	precat.	solvent	yield (%) ^b	dr of 3aac	ee (%) ^d
1	4a	THF	nr	_	_
2	4b	THF	38	5:1	63
3	4c	THF	86	12:1	99
4	4d	THF	58	14:1	98

4b: Ar = $2,4,6-Me_3C_6H_2$

4c: Ar = 2,4,6-Me₃C₆H₂ **4d**: Ar= $2,6-Et_2C_6H_3$

RCC Seminar – Mylène ROUDIER – June 24th, 2016

(entry	precat.	solvent	yield (%) ^b	dr of 3aac	ee (%) ^d
	1	4a	THF	nr	_	_
	2	4b	THF	38	5:1	63
	3	4c	THF	86	12:1	99
	4	4d	THF	58	14:1	98

RCC Seminar – Mylène ROUDIER – June 24th, 2016

4d: Ar= $2,6-Et_2C_6H_3$

entry	precat.	solvent	yield (%) ^b	dr of 3aac	ee (%) ^d
1	4a	THF	nr	_	_
2	4b	THF	38	5:1	63
3	4c	THF	86	12:1	99
4	4d	THF	58	14:1	98
10	_	THF	nr	_	_
11^e	4c	THF	nr	_	_
12 ^f	4c	THF	nr	_	_
					8

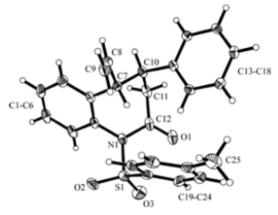
86 99 12:1 Without Pd(PPh₃)₄ 58 14:1 98 10 **THF** nr 4c THFnr 4c THF nr Without Cs₂CO₃

Scope of the enal (selected examples)

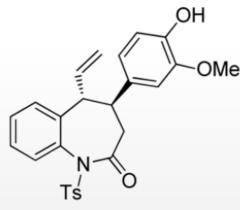
3ab $R^1 = Me$,

3aa R¹ = H, 86% yield, 12:1 *dr*, 99% *ee*

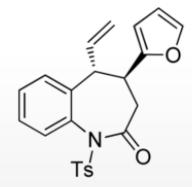
60% yield, 10:1 dr, 97% ee

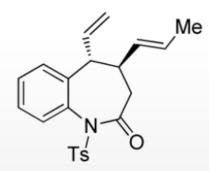

3ac R^1 = OMe, 82% yield, 20:1 dr, 98% ee c1-c6

3ad R^1 = NMe₂, 93% yield, 20:1 dr, 99% ee


3ae R^1 = CI, 64% yield, 12:1 dr, 97% ee

3af $R^1 = F$, 77% yield, 20:1 dr, 98% ee

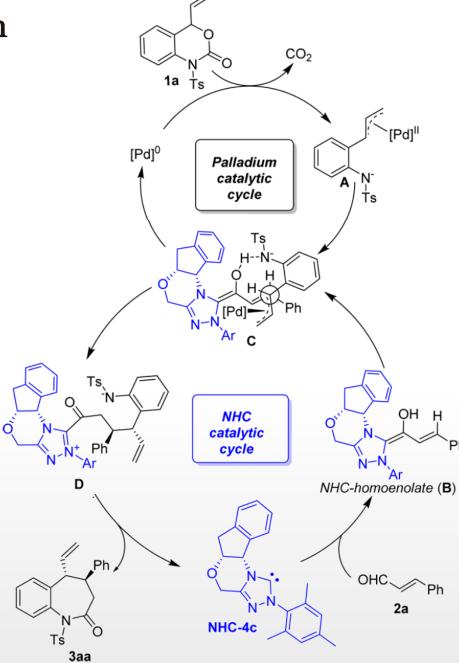

3ag $R^1 = NO_2$, 98% yield, 20:1 dr, 91% ee


X-ray structure of 3aa

3aj 69% yield 15:1 dr, 98% ee

3ak 80% yield 10:1 *dr*, 98% *ee*

3al 79% yield 6:1 dr, 92% ee^b


Scope of the benzoxazinanone (selected examples)

3ba R = Me, 88% yield, 14:1 *dr*, 99% *ee* **3ca** R = Cl, 61% yield, 12:1 *dr*, 92% *ee* **3da** R = F, 61% yield, 9:1 *dr*, 93% *ee* **3ea** R = Br, 55% yield, 10:1 *dr*, 93% *ee* **3fa** R = CF₃, 44% yield, 8:1 *dr*, 90% *ee*

3ga R = Me, 80% yield, 20:1 *dr*, 99% *ee* **3ha** R = Cl, 68% yield, 14:1 *dr*, 97% *ee* **3ia** R = F, 77% yield, 14:1 *dr*, 98% *ee* **3ja** R = Br, 73% yield, 13:1 *dr*, 98% *ee* **3ka** R = OMe, 87% yield, 9:1 *dr*, 99% *ee*

3bk 90% yield 12:1 *dr*, 99% *ee*

Mechanism

RCC Seminar – Mylène ROUDIER – June 24th, 2016

Control experiments

5 mol% Pd(PPh₃)₄: 33% yield, 12:1 *dr*, 99% *ee* without Pd(PPh₃)₄: **No reaction**

> Cooperative activation mode in the annulation is operative

Control experiments

5 mol% Pd(PPh₃)₄: 33% yield, 12:1 dr, 99% ee without Pd(PPh₃)₄: **No reaction**

Cooperative activation mode in the annulation is operative

Benzoxazinone inable to form \pi-allyl palladium species

Conclusion

- > Combination of transition metal/NHC catalysis in cooperative process
- > Asymmetric induction by chiral NHC organocatalyst
- General method, high enantioselectivities

Conclusion

- > Combination of transition metal/NHC catalysis in cooperative process
- > Asymmetric induction by chiral NHC organocatalyst
- > General method, high enantioselectivities

Thank you for your attention