03/26/2015

Bibliography Seminar

The synthesis of cyclopropenes and their applications in cycloadditions from 2006 to nowadays

2

Because the ring is **highly strained**, cyclopropenes are both **difficult to prepare** and **interesting to study**

F. Allen, *Tetraheddron*, **1982**, *38*, 645

General scheme of all the ways to synthesize cyclopropenes

Use **[x+y] (square brackets)** for the number of **electrons** involved in the transformation Use **(x+y) (parenthesis)** for the number of **atoms** involved in the transformation

Use **[x+y] (square brackets)** for the number of **electrons** involved in the transformation Use **(x+y) (parenthesis)** for the number of **atoms** involved in the transformation

Example of a **1,3-dipolar cycloaddition**:

Use **[x+y] (square brackets)** for the number of **electrons** involved in the transformation Use **(x+y) (parenthesis)** for the number of **atoms** involved in the transformation

Example of a **1,3-dipolar cycloaddition**:

General scheme

General scheme

Two types of cycloadditions

General scheme

Two types of cycloadditions

Transition-Metal-Catalysed (carbenoids):

General scheme

Two types of cycloadditions

Transition-Metal-Catalysed (carbenoids):

Transition-Metal-Free:

In situ generated carbenes

First general method for cyclopropenation that tolerates ß-hydrogens Highly substituted cyclopropenes bearing an ester and different aromatics

First general method for cyclopropenation that tolerates ß-hydrogens Highly substituted cyclopropenes bearing an ester and different aromatics

Silver triflate: efficient for the **cyclopropenation of internal alkynes** using donor-/- acceptor-substituted diazo compounds as carbenoid precursors.

Silver triflate: efficient for the **cyclopropenation of internal alkynes** using donor-/- acceptor-substituted diazo compounds as carbenoid precursors.

Highly substituted cyclopropenes

Silver triflate: efficient for the **cyclopropenation of internal alkynes** using donor-/- acceptor-substituted diazo compounds as carbenoid precursors.

Highly substituted cyclopropenes

Simmons-Smith does not work with alkynes

Simmons-Smith does not work with alkynes

First zinc-catalyzed cyclopropenation Inexpensive and **less toxic catalyst Mild conditions** (25 °C, DCM, 0.5-7 h)

Highly useful subunits (CF₃ groups and functionalisable cyclopropenes)

Highly useful subunits (CF₃ groups and functionalisable cyclopropenes)

First cyclopropenation of alkynes with trifluoromethyldiazomethane

9

Highly useful subunits (CF₃ groups and functionalisable cyclopropenes)

First cyclopropenation of alkynes with trifluoromethyldiazomethane

Key: identification of a robust catalyst to support harsh conditions

[Rh₂(S-DOSP)₄] effective catalyst for highly enantioselective cyclopropenation

J. Briones, J. Hansen, K. Hardcastle, J. Autschbach, H. Davies; J. Am. Chem. Soc., **2010**, 132, 17211

[Rh₂(S-DOSP)₄] effective catalyst for highly enantioselective cyclopropenation

High enantioselectivity governed by: Specific orientation of the approach of the alkyne due to hydrogen bonding

J. Briones, J. Hansen, K. Hardcastle, J. Autschbach, H. Davies; J. Am. Chem. Soc., **2010**, 132, 17211

First catalytic asymmetric route to diacceptor cyclopropenylphosphonates

V. Lindsay, D. Fiset, P. Gritsch, S. Azzi, A. Charrette, *J. Am. Chem. Soc.*, **2013**, *135*, 1463

11

First catalytic asymmetric route to diacceptor cyclopropenylphosphonates

Takes advantages of the **particuliar reactivity** of the cyanocarbenes

V. Lindsay, D. Fiset, P. Gritsch, S. Azzi, A. Charrette, *J. Am. Chem. Soc.*, **2013**, *135*, 1463

11

First catalytic asymmetric route to diacceptor cyclopropenylphosphonates

Takes advantages of the **particuliar reactivity** of the cyanocarbenes

Scope extented to ester cyclopropenes and substituted allenes

V. Lindsay, D. Fiset, P. Gritsch, S. Azzi, A. Charrette, *J. Am. Chem. Soc.*, **2013**, *135*, 1463

Increasing demand for gem-difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem., 2013, 52, 12390

Increasing demand for gem-difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

Increasing demand for gem-difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

Increasing demand for gem-difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

Transition-Metal-Free cycloadditions

Increasing demand for gem-difluorocyclopropa(e)nes and hetereoatom difluoromethyl compounds

Transition-Metal-Free cycloadditions

$$\begin{array}{c|c} R^{1} & = & R^{2} \\ & + \\ & NC \\ & CN \\ & DCE, 50 \ ^{\circ}C, 2h \\ & R^{1} \\ & R^{2} \\ & 10 \text{ examples} \\ & 26-96\% \text{ yield} \end{array}$$

First Hypervalent iodine-mediated cyclopropenation under mild conditions

S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., **2014**, *12*, 1341

Transition-Metal-Free cycloadditions

S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., **2014**, *12*, 1341

1,2-Elimination - General scheme

1,2-Elimination - General scheme

Limitations of the (2+1) cycloaddition:

- Poorly applicable to some substrates (i.a. aryl diazoacetates with EWG substituents)
- Poor chemoselectivity in some cases: dimerization or further transformation into furans

1,2-Elimination - General scheme

Limitations of the (2+1) cycloaddition:

- Poorly applicable to some substrates (i.a. aryl diazoacetates with EWG substituents)
- Poor chemoselectivity in some cases: dimerization or further transformation into furans

Good alternative: 1,2-Elimination

1,2-Elimination - Examples

L. Sydnes, E. Bakstad, Acta Chem. Scand., 1996, 50, 446

1,2-Elimination - Examples

L. Sydnes, E. Bakstad, Acta Chem. Scand., 1996, 50, 446

Rh-Catalyzed Stereoselective C(sp³)H insertion

A. Archambeau, F. Miege, C. Meyer, J. Cossy Angew. Chem., **2012**, *51*, 11540

1,2-Elimination - Examples

Rh-Catalyzed Stereoselective C(sp³)H insertion

A. Archambeau, F. Miege, C. Meyer, J. Cossy Angew. Chem., **2012**, *51*, 11540

Au-Catalysed cycloisomerisation

F. Miege, C. Meyer, J. Cossy, Chem. Eur. J. 2012, 18, 7810

S. Chuprakov, D. Malyshev, A. Trofimov, V. Gevorgyan, J. Am. Chem. Soc., 2007, 129, 14868

Sila Morita-Baylis-Hillman Reaction of Cyclopropenes

Sila Morita-Baylis-Hillman Reaction of Cyclopropenes

Stille Coupling Reactions with Base-Sensitive Cyclopropenes

Ring-opening of Cyclopenyl Lithium Species

17

Stille Coupling Reactions with Base-Sensitive Cyclopropenes

Ring-opening of Cyclopenyl Lithium Species

Stannylation of various cyclopropenes

Stille Coupling Reactions with Base-Sensitive Cyclopropenes

Ring-opening of Cyclopenyl Lithium Species

Stannylation of various cyclopropenes

Reactivity of cyclopropenes – General scheme

Reactivity of cyclopropenes – General scheme

(2+2+1) Pauson-Khand Cycloaddition

(2+2+1) Pauson-Khand Cycloaddition

General mechanism

(2+2+1) Pauson-Khand Cycloaddition

General mechanism

(2+2+1) Pauson-Khand Cycloaddition - Application to cyclopropenes

Enantioselective Synthesis of (–)-Pentalenene

(2+2+1) Pauson-Khand Cycloaddition - Application to cyclopropenes

Enantioselective Synthesis of (–)-Pentalenene

Using [2+2+1] Pauson-Khand cycloaddition of cyclopropenes as key step

An unexpected discovery...

An unexpected discovery...

An unexpected discovery...

Why is the isolation of this cobalt complexe interesting ?

An unexpected discovery...

Why is the isolation of this cobalt complexe interesting ?

Alkene insertion is the rate-determining step in Pauson-Khand reactions

Hard to have information about intermediates formed after the alkene insertion 20 M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137

An unexpected discovery...

Why is the isolation of this cobalt complexe interesting ?

Alkene insertion is the rate-determining step in Pauson-Khand reactions

Hard to have information about intermediates formed after the alkene insertion

First insight of what happens after the alkene insertion

M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137

20

Purification of the complex

21

By silica gel chromatography

Only 13% yield due to partial decomposition during the purification

M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137

Purification of the complex

By silica gel chromatography

Only 13% yield due to partial decomposition during the purification

Purification of the complex

By silica gel chromatography

Only 13% yield due to partial decomposition during the purification

EtO

TMS

CO

IR Analysis

v = 4 external carbonyls: 2067, 2038, 2008 (I= 2) $v(\text{free CO}) = 2170 \text{ cm}^{-1}$ (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm⁻¹
υ(classic carbonyl) = 1760-1665 cm⁻¹ (smaller angle, greater s-character)

M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137

IR Analysis

v = 4 external carbonyls: 2067, 2038, 2008 (I= 2) $v(\text{free CO}) = 2170 \text{ cm}^{-1}$ (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm⁻¹
υ(classic carbonyl) = 1760-1665 cm⁻¹ (smaller angle, greater s-character)

X-Ray analysis

IR Analysis

v = 4 external carbonyls: 2067, 2038, 2008 (I= 2) $v(\text{free CO}) = 2170 \text{ cm}^{-1}$ (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm⁻¹
υ(classic carbonyl) = 1760-1665 cm⁻¹ (smaller angle, greater s-character)

X-Ray analysis

Selected bond lengths:

 $Co^{1}-Co^{2}$ 2.469 Å $Co^{2}-C^{5}$ 2.183 Å (longest Co-C bond) $Co^{2}-C^{8}$ 1.884 Å (smallest Co-C bond)

M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137

IR Analysis

v = 4 external carbonyls: 2067, 2038, 2008 (I= 2) $v(\text{free CO}) = 2170 \text{ cm}^{-1}$ (retro donation of Co)

υ = 1 bridging carbonyl: 1853 cm⁻¹
υ(classic carbonyl) = 1760-1665 cm⁻¹ (smaller angle, greater s-character)

X-Ray analysis

Selected bond lengths:

Co¹-Co² 2.469 Å Co²-C⁵ 2.183 Å (longest Co-C bond) Co²-C⁸ 1.884 Å (smallest Co-C bond)

Selected angles:

Co¹-C³-Co² 76.22 ° Co¹-C⁸-Co² 79.31 ° (very small C(sp²) angle)

M. Pallerla, G. Yap, J. Fox, J. Org. Chem., 2008, 73, 6137

¹³C NMR Analysis

¹³C NMR Analysis

At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

Serendipity in the (2+2+1) Pauson-Khand Cycloaddition

¹³C NMR Analysis

23

At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

At -25°C: peak at 212 ppm (I= 3) not observed

Serendipity in the (2+2+1) Pauson-Khand Cycloaddition

¹³C NMR Analysis

At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

At -25°C: peak at 212 ppm (I= 3) not observed

At -60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Serendipity in the (2+2+1) Pauson-Khand Cycloaddition

¹³C NMR Analysis

At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

At -25°C: peak at 212 ppm (I= 3) not observed

At -60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Interpretation:

Slow exchange between bridging and terminal carbonyls at - 60 °C

Serendipity in the (2+2+1) Pauson-Khand Cycloaddition

¹³C NMR Analysis

At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

At -25°C: peak at 212 ppm (I= 3) not observed

At -60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Interpretation:

Slow exchange between bridging and terminal carbonyls at - 60 °C Fast exchange on the NMR time scale at 25 °C

Serendipity in the (2+2+1) Pauson-Khand Cycloaddition

¹³C NMR Analysis

At 25°C: Three picks at 197, 202 and 212 ppm (I= 3) for the 5 carbonyls

At -25°C: peak at 212 ppm (I= 3) not observed

At -60°C: Four picks at 198, 203, 206 (I= 2) and 230 ppm for the 5 carbonyls

Interpretation:

Slow exchange between bridging and terminal carbonyls at - 60 °C Fast exchange on the NMR time scale at 25 °C Coalescence observed at - 25 °C (signals too broad to be seen)

Regioselectivity of the Pauson-Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Regioselectivity of the Pauson-Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Selectivity in alkene insertion Kinetic discrimination after alkene insertion

Regioselectivity of the Pauson-Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Selectivity in alkene insertion Kinetic discrimination after alkene insertion

Facts: After alkene insertion:

24

- Product 13 leads to **ring-opening** of the cyclopropane to Co complex 10
- Diastereomers 12 and 12' leads to **Pauson-Khand** cyclopentenone product 9

EtO₂

TMS

Regioselectivity of the Pauson-Khand cycloaddition

High regioseletivity Opposite regioselectivity between cyclopentenone 9 and complex 10

Selectivity in alkene insertion Kinetic discrimination after alkene insertion

Facts: After alkene insertion:

- Product 13 leads to **ring-opening** of the cyclopropane to Co complex 10
- Diastereomers 12 and 12' leads to **Pauson-Khand** cyclopentenone product 9

Possible explanations:

- Stabilisation of the α -carbon-metal bond by Si
- Steric interactions

Much less developed than other carbonylative cycloadditions

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three-carbon component ...

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three-carbon component ... Cyclopropenes !

25

Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three-carbon component ... Cyclopropenes !


```
ene-cyclopropene
```


Much less developed than other carbonylative cycloadditions

Difficulty to introduce the required three-carbon component ... Cyclopropenes !

ene-cyclopropene

25

Stereochemistry confirmed by NOESY experiment Trans configuration of the fused rings

C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Org. Let., 2010, 12, 3082

Steps of the mecanism:

(3+2+1) Cycloaddition

Steps of the mecanism:

A: complexation of Rh(I)

(3+2+1) Cycloaddition

Steps of the mecanism:

A: complexation of Rh(I)

26

B: oxidative addition of the Rh(I) to σ -bond of the cyclopropene generating rhodacyclobutene

(3+2+1) Cycloaddition

Steps of the mecanism:

A: complexation of Rh(I)

- **B**: oxidative addition of the Rh(I) to σ -bond of the cyclopropene generating rhodacyclobutene
- Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

General Synthesis Ap

(3+2+1) Cycloaddition

Steps of the mecanism:

A: complexation of Rh(I)

26

B: oxidative addition of the Rh(I) to σ -bond of the cyclopropene generating rhodacyclobutene

Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

General Synthesis

Applications

(3+2+1) Cycloaddition

Steps of the mecanism:

A: complexation of Rh(I)

B: oxidative addition of the Rh(I) to σ -bond of the cyclopropene generating rhodacyclobutene

Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

E' *cis*-fused not observed only *cis*-fused cycloadduct G

General Synthesis

Applications

(3+2+1) Cycloaddition

Steps of the mecanism:

A: complexation of Rh(I)

B: oxidative addition of the Rh(I) to σ -bond of the cyclopropene generating rhodacyclobutene

Path a: C: CO insertion; D: alkene insertion Path b: F: alkene insertion; D: CO insertion

E' cis-fused not observed only cis-fused cycloadduct G

(2+2) Cycloaddition - Original formation of substituted benzene

G. Lee, W. Wang, S. Jiang, C. Chang, R. Tsai, J. Org. Chem. , 2009, 74, 7994

(2+2) Cycloaddition - Original formation of substituted benzene

G. Lee, W. Wang, S. Jiang, C. Chang, R. Tsai, J. Org. Chem. , 2009, 74, 7994

(4+2) Cycloaddition - Cyclopropenes as Reactive and Selective Dienophiles

Formation of Isoxazolidines, aziridines and pyrroles thermically controlled

V. Diev, O. Stetsenko, T. Tung, J. Kopf, R. Kostikov, A. Molchanov, *J. Org. Chem*, **2008**, *73*, 2396

Before i thank you for your kind attention ...

Before i thank you for your kind attention ...

Let's go back to the Hypervalent iodine mechanism described before ...

Find what could be wrong Find a better solution Let's find out if you were right !

Postulated mechanism

S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., **2014**, *12*, 1341

Find what could be wrong Find a better solution Let's find out if you were right !

Postulated mechanism

Exercise: Find 2 possibles flaws of the mechanism

30

Which electrophile is the strongest in the medium ?

How this electrophile could react with hypervalent iodine ? Write a mechanism.

S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., **2014**, *12*, 1341

S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem., **2014**, *12*, 1341

Possible flaws of mechanism:

Sir XB's approved postulated Concerted Deprotonation-Electrophilic Iodination Mechanism:

Sir XB's approved postulated Concerted Deprotonation-Electrophilic Iodination Mechanism:

Sir XB's approved postulated Concerted Deprotonation-Electrophilic Iodination Mechanism:

Sir XB's approved postulated Concerted Deprotonation-Electrophilic Iodination Mechanism:

Now i can thank you

for your kind attention

