Intramolecular C-H Activation through

Gold(I)-Catalyzed Reaction of Iodoalkynes

P. M. Poladura, E. Rubio, José M. Gonzalez. Angew. Chem. Int. Ed. 2015, 54, 1

STEREO SEMINAR 05/02/2015 - Yajun REN

Ruthenium-catalysed terminal alkyne activation: stepwise 1,5-hydride shift

$$(X = OR, NR_2, alkyl)$$

$$X$$

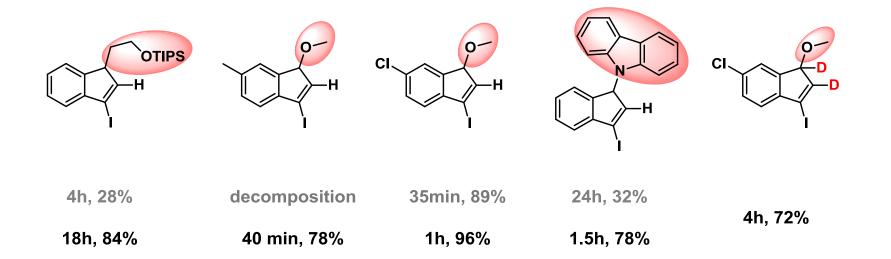
$$(X = OR, NR_2, alkyl)$$

Gold vinylidenes from gold-catalysed dual activation

$$\begin{array}{c|c} & & & \\ & & \\ \hline & & \\$$

Gold vinylidenes from activation of iodoalkynes

1:4


Optimization of cycloisomerization conditions

Entry	Catalyst	Additive (equiv)	t [h]	Conv. [%]	Yield [%]
1	${\rm IPrAuNTf}_2$	-	1	100	decomposition
2	${\it John Phos AuNTf}_2$	-	24	10	0
3	$(RO)_3$ PAuNT f_2	-	24		0
4	Ph ₃ PAuNTf ₂	-	24	14	0
5	$IPrAuNTf_2$	ttbp (0.25)	2.5	100	60
6	$IPrAuNTf_2$	dtmp(0.25)	24	65	24
7	$IPrAuNTf_2$	lut (0.25)	24	24	0
8	$IPrAuNTf_2$	tBuOK(0.25)	24	65	20
9	$IPrAuNTf_2$	nor(0.25)	18	100	6
10	IPrAuNTf ₂	ttbp (0.1)	1	100	61

Indene derivatives through C-H bond activation

1.5 h, 87%

1h, 91%

1h, 97%

1h, 91%

Mechanism insights

Proposed mechanism

Conclusion

- **♦** A new catalytic transformation of iodoalkynes is presented
- **♦** A wide range of iodine-substituted indenes are obtained
- ◆ This study reveals a distinct reaction path for C-H insertion reactions involving metal vinylidenes
- ☐ The function of additive is still not clear

Thank you for your attention