

Activation of Carboxylic Acids in Asymmetric Organocatalysis

Mattia Riccardo Monaco, Beln Poladura, Miriam Diaz de Los Bernardos, Markus Leutzsch, Richard Goddard, and Benjamin List* *Angew. Chem. Int. Ed.* **2014**, *53*, 7063–7067

1. Hydrogen Bonding

G. N. Lewis

to be by way of O-O bond 2

1. Hydrogen Bonding

1. Asymmetric activation modes of a carbonyl group or imine

[2] Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nature Chemistry 2012, 4, 603 -614

6

c) Crystallization of TRIP.HOAc

3. Desymmetrization of meso-aziridines

Reactions were performed on a 0.2 mmol scale. The loading of AcOH was increased to 10 equivalents in the reactions to products **2i**, **j**.

4. Kinetic resolution of racemic terminal aziridines

Entry	Aziridine	Product	Yield [%]	e.r.
1	NCOAr	OBz WHCOAr (S)-4a	49	94 : 6
	rac- 3a	NCOAr Y 3	46	95.5 : 4.5
2	Ph	Ph $\underbrace{\bigvee_{2}^{OBz}}_{NHCOAr}$ (S)-4b	51	92.5 : 7.5
	<i>rac</i> - 3b	Ph y NCOAr	44	98.5 : 1.5
3	NCOAr rac-3c	OBz NHCOAr	28	96 : 4
		NCOAr	58	72 : 28

5. Proposed catalytic cycle for the TRIP-RCO₂H-mediated ring opening of aziridines

6. Conclusions

• **NEW CONCEPT FOR THE ACTIVATION OF CARBOXYLIC ACIDS** by heterodimerization with chiral phosphoric acids.

