A Mild, Ferrocene-Catalyzed C–H Imidation of (Hetero)Arenes

Klement Foo,[†] Eran Sella,[†] Isabelle Thomé,[†] Martin D. Eastgate,[‡] and Phil S. Baran^{*},[†]

[†]Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States [‡]Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States

J. Am. Chem. Soc., 2014, 136 (14), pp 5279–5282

Diana Castillo 14/04/2014

State of the Art

Methods for intermolecular C(sp²)-H amination

Methods for intermolecular C(sp²)-H amination

NFSI = *N*-fluorobenzenesulfonimide

Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694.

Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278.

Preliminary studies towards radical-based C-H amination

Forrester, A. R.; Gill, M.; Meyer, C. J.; Sadd, J. S.; Thomson, R. H. J. Chem. Soc., Chem. Commun. 1975, 291.

C-H Imidation of (Hetero)Arenes

Preparation of NSP (N-succinimidyl perester) 7

Reaction condition optimization

Table 1. Catalyst screening for reaction of NSP 7 with 4-methoxypyridine (4a).

Entry	Catalyst	(mol%)	Yield (%) ^{<i>a</i>}	Entry	Catalyst ^a	(mol%)	Yield (%) ^a
1	none	-	7	8	Cp ₂ Fe	5	52
2	CuCl	20	13	9	FeSO ₄	10	24
3	CuI	20	14	10	FeCl ₃	10	15
4	CuBr	20	14	11	Fe(acac) ₃	10	23
5	CuCN	20	18	12	Fe(OAc) ₂	10	25
6	Cu(OTf) ₂	10	26	13	Co(acac) ₃	10	21
7	CuF ₂	10	14	14	Mn(acac) ₂	10	23

^aYield is based on NMR comparison.

Table 2. Substrate Scope of Ferrocene-Catalyzed C-H Imidation of (Hetero)Arenes 4

^aCp₂Fe (5 mol%), (hetero)arene 4 (0.2 mmol), NSP (7) (3 equiv), CH₂Cl₂ (0.05 M), 50 °C, 2–7 h; isolated yields reported. ^bNSP (7) (4 equiv) was used. ^c NSP (7) (2.75 equiv) was used. ^dNSP (7) (5 equiv) was used. ^eCp₂Fe (10 mol%) was used.

Table 2. Substrate Scope of Ferrocene-Catalyzed C-H Imidation of (Hetero)Arenes 4

ме

(30%)

^aCp₂Fe (5 mol%), (hetero)arene 4 (0.2 mmol), NSP (7) (3 equiv), CH₂Cl₂ (0.05 M), 50 °C, 2–7 h; isolated yields reported. ^bNSP (7) (4 equiv) was used. ^c NSP (7) (2.75 equiv) was used. ^dNSP (7) (5 equiv) was used. ^eCp₂Fe (10 mol%) was used.

5u

(40%)

5s

(60%)

5t^b

(37%)

5w^d

(36%; *A:B:C:D* = 6:3:3:2)

one-electron oxidation and deprotonation

One-pot C-H imidation/deprotection of 4d and 4j

CONCLUSION

A simple method for direct C–H imidation is reported using a new perester-based selfimmolating reagent and a base-metal catalyst.

The scope of the reaction is broad, the conditions are extremely mild, and the reaction is tolerant of oxidizable and acid labile functionality, multiple heteroatoms, and aryl iodides.

The succinimide products obtained can be easily deprotected in to reveal the corresponding anilines directly.