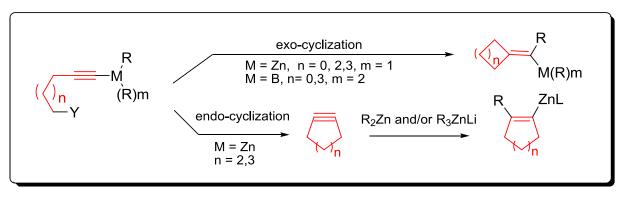
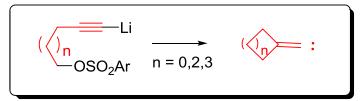


Cyclization of Gold Acetylides:

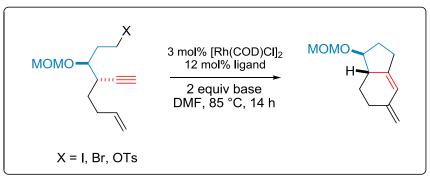

Synthesis of Vinyl Sulfonates via Gold Vinylidene Complexes

Janina Bucher, Thomas Wurm, Kumara Swamy Nalivela, Matthias Rudolph, Frank Rominger, and A. Stephen K. Hashmi*

Angew. Chem. Int. Ed., 2014, DOI: 10.1002/anie.201310280


Ophélie Quinonero Group meeting 10/03/2014

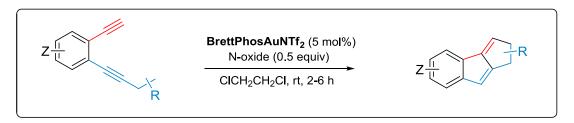
• Cyclization of alkynyl borate and zincate bearing a leaving group:


Harada et al. Tet. Lett. 1997, 38, 2855-2858

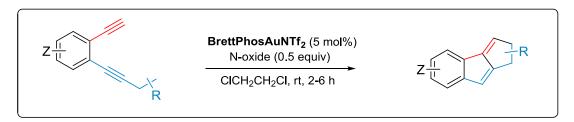
• Cyclization of alkynyl lithium:

Harada et al. J. Org. Chem. 1998, 63, 9007-9012

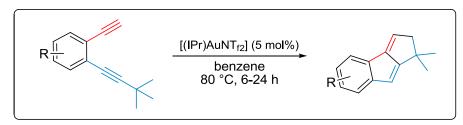
• Rhodium vinylidene complexe:


Lee et al, J. Am. Chem. Soc. 2006, 128, 14818-14819

• Proposed mechanism


X = I, Br, OTs

• Dual gold catalysis :

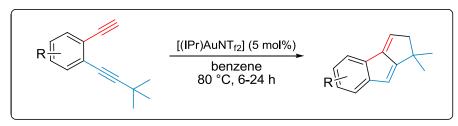


Zhang et al, J. Am. Chem. Soc. 2012, 134, 31-34

• Dual gold catalysis :



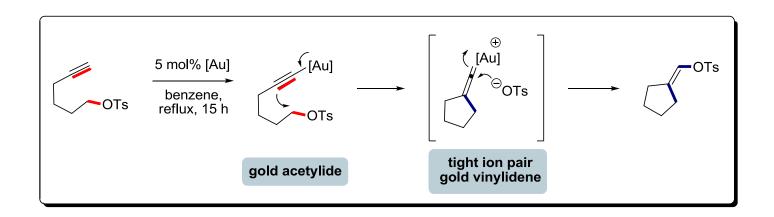
Zhang et al, J. Am. Chem. Soc. 2012, 134, 31-34

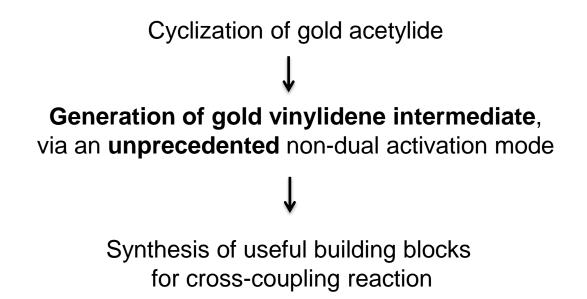


Hashmi et al, Angew. Chem. Int. Ed. 2012, 51, 4456-4460

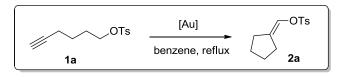
• Dual gold catalysis :

Zhang et al, J. Am. Chem. Soc. 2012, 134, 31-34



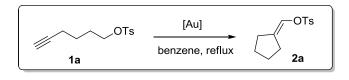

Hashmi et al, Angew. Chem. Int. Ed. 2012, 51, 4456-4460

• Proposed mechanism



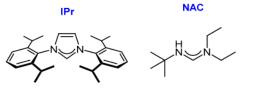
Leaving Group strategy : a new approach for gold vinylidene synthesis

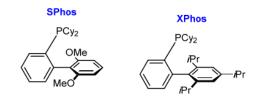
Optimization of the reaction conditions

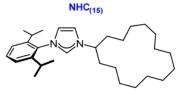


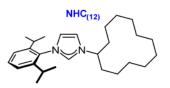
• Catalyst screening^[a]

#	catalyst	loading	time	conversion	yield 2a	- IPr	NAC
1	IPrAuOH	5 mol%	16 h	100 %	77 %	J NON TO	
2	IPrAuMe	5 mol%	16 h	100 %	74 %	$\sim \sim \sim$	~
3	IPrAuPh	5 mol%	16 h	100 %	76 %		
4	IPrAuPropyne	5 mol%	16 h	100 %	80 %	PCy ₂	XPhos PCy ₂
5	NACAuPropyne	5 mol%	16 h	8 %	8 %		
6	XPhosAuPropyne	5 mol%	16 h	100 %	92 %	Mee	, iPr [€]
7	SPhosAuPropyne	5 mol%	16 h	100 %	91 %	NHC	(15)
8	XPhosAuPropyne	2.5 mol%	16 h	100 %	79 %		
9	SPhosAuPropyne	2.5 mol%	18 h	100 %	72 %	/	\sum
10	NHC ₍₁₅₎ AuPropyne	2.5 mol%	16 h	100 %	81 %	NHC	C(12)
11	NHC(12)AuPropyne	2.5 mol%	16 h	94 %	67 %		$\langle \rangle$
12	NHC(15)AuPropyne	1 mol%	24 h	70 %	63 %	- 7	\checkmark

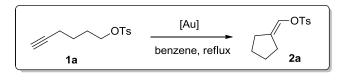

^[a] Conversion and Yields determined by GC analysis using cyclooctane as an internal standard


Optimization of the reaction conditions



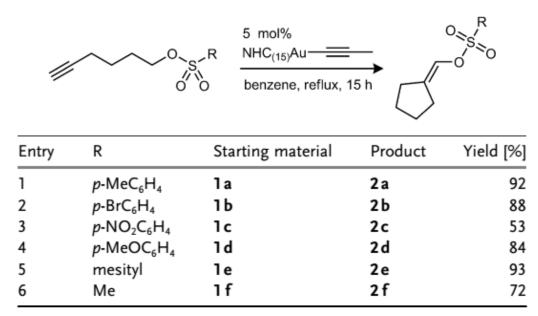

• Catalyst screening^[a]

	#	catalyst	loading	time	conversion	yield 2a
-	1	IPrAuOH	5 mol%	16 h	100 %	77 %
	2	IPrAuMe	5 mol%	16 h	100 %	74 %
Best	3	IPrAuPh	5 mol%	16 h	100 %	76 %
counterion	» 4	IPrAuPropyne	5 mol%	16 h	100 %	80 %
(X ligand)	5	NACAuPropyne	5 mol%	16 h	8 %	8 %
	6	XPhosAuPropyne	5 mol%	16 h	100 %	92 %
	7	SPhosAuPropyne	5 mol%	16 h	100 %	91 %
	8	XPhosAuPropyne	2.5 mol%	16 h	100 %	79 %
	9	SPhosAuPropyne	2.5 mol%	18 h	100 %	72 %
	10	NHC ₍₁₅₎ AuPropyne	2.5 mol%	16 h	100 %	81 %
	11	NHC(12)AuPropyne	2.5 mol%	16 h	94 %	67 %
	12	NHC(15)AuPropyne	1 mol%	24 h	70 %	63 %



^[a] Conversion and Yields determined by GC analysis using cyclooctane as an internal standard

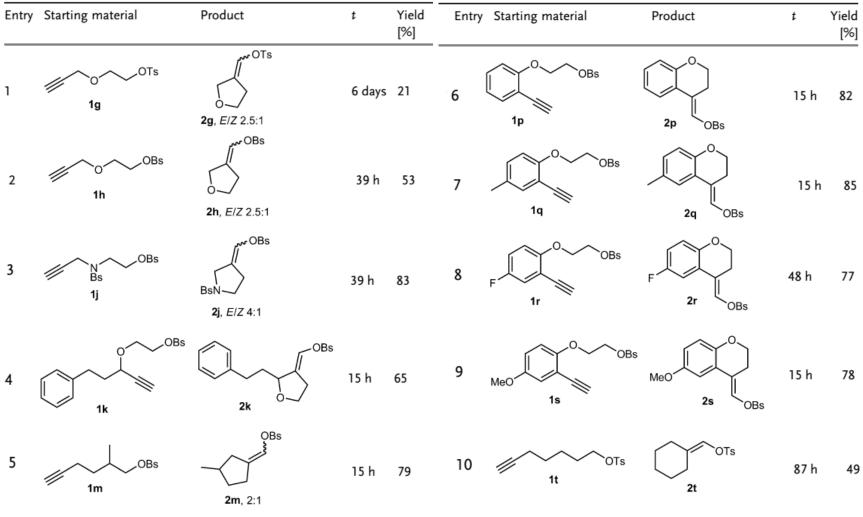
Optimization of the reaction conditions


• Catalyst screening^[a]

В L li

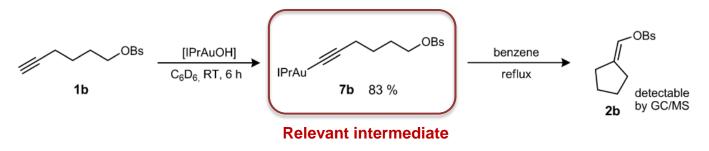
	#	catalyst	loading	time	conversion	yield 2a	IPr	NAC
	1	IPrAuOH	5 mol%	16 h	100 %	77 %	J-N-N-X-	
	2	IPrAuMe	5 mol%	16 h	100 %	74 %		1
	3	IPrAuPh	5 mol%	16 h	100 %	76 %		
	4	IPrAuPropyne	5 mol%	16 h	100 %	80 %	PCy ₂	XPhos PCy ₂
	5	NACAuPropyne	5 mol%	16 h	8 %	8 %		/Pr
	6	XPhosAuPropyne	5 mol%	16 h	100 %	92 %	1100	<i>i</i> Pr [•]
	7	SPhosAuPropyne	5 mol%	16 h	100 %	91 %	NHC	(15)
	8	XPhosAuPropyne	2.5 mol%	16 h	100 %	79 %		\sim
	9	SPhosAuPropyne	2.5 mol%	18 h	100 %	72 %		\sim
Best	10	NHC(15)AuPropyne	2.5 mol%	16 h	100 %	81 %	NHC	(12)
	11	NHC ₍₁₂₎ AuPropyne	2.5 mol%	16 h	94 %	67 %		5
	12	NHC(15)AuPropyne	1 mol%	24 h	70 %	63 %	-7	\checkmark

^[a] Conversion and Yields determined by GC analysis using cyclooctane as an internal standard

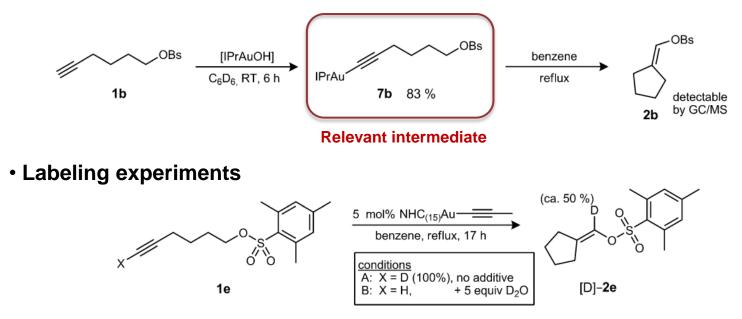

Scope

(All yields refer to isolated products)

- Tolerance for differents sulfonates moieties
- Sulfonates bearing aromatics substituents (good to excellent yields)
- No reaction when replacing sulfonates to halides

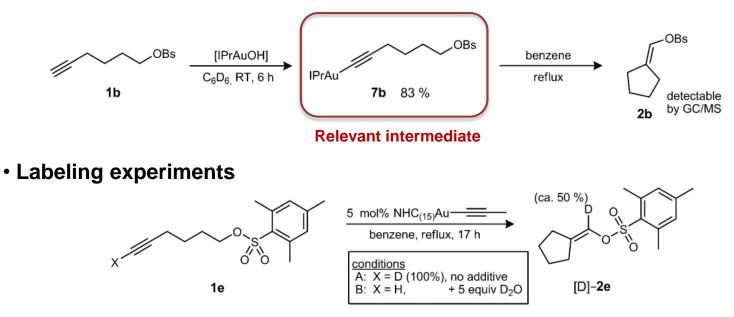

Scope

(All yields refer to isolated products)


Mechanistic studies

Isolation of catalytic intermediate under stoechiometric conditions

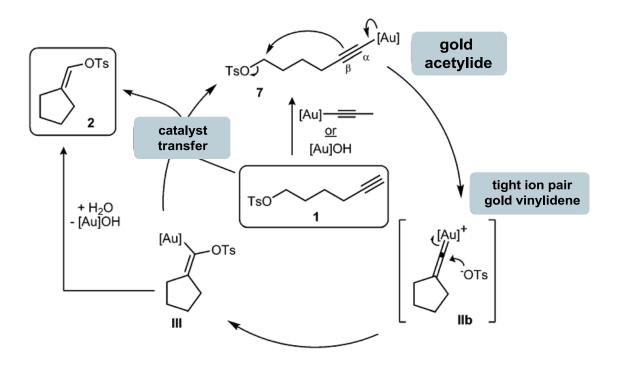
Mechanistic studies


Isolation of catalytic intermediate under stoechiometric conditions

Highlight of a competition reaction for protodeauration between traces water and SM (catalyst transfer)

Mechanistic studies

Isolation of catalytic intermediate under stoechiometric conditions



Highlight of a competition reaction for protodeauration between traces water and SM (catalyst transfer)

- - Tosylate counterion remains in the gold coordination sphere (tight ion pair or covalently bound) during the catalytic cycle

no cross-over products could be detected

Proposed reaction mechanism

- 1) Formation of gold acetylide
- 2) Formation of gold vinylidene

3) Inner sphere tosylate addition to the gold vinylidene

4) Protodeauration of vinylgold species

Conclusion

- First example of gold vinylidene synthesis by gold acetylides cyclization without dual activation mode.
- A range of **differently substituted sulfonates** can be used.
- **Products** could be further functionnalized by cross coupling reactions and lead to useful building blocks.