

Catalytic Enantioselective Amination of Alcohols by the Use of Borrowing Hydrogen Methodology: Cooperative Catalysis by Iridium and a Chiral Phosphoric Acid

Yao Zhang, Ching-Si Lim, Derek Sui Boon Sim, Hui-Jie Pan, and Yu Zhao

Angew. Chem. Int. Ed. DOI: 10.1002/anie.201307789

by Haiying Du

6th Jan 2014

Introduction

a) Previous asymmetric reduction of imines to chiral amines:

a) H.-U. Blaser, C. Malan, B. Pugin, F. Spinder, H. Steiner, M. Studer, Adv. Synth. Catal. 2003, 345, 103–151;

b) T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753 – 819;

c) D.-S.Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev. 2012, 112, 2557 – 2590.

the first enantioselective amination of alcohols by the use of borrowing hydrogen methodology under the catalysis of a chiral Ir complex in cooperation with a chiral phosphoric acid

Table 1	Optimiza	ation of the enantio	selective amination					
	он	[M]	(5 mol%), additive					
n-hexyl?	∕_ _{Me} + H ₂	N - OMe	huent reflux 24 h					
	(±)	\$0	A Å MC n-bex					
1a (1	.5 equiv)	2a	4 A M5 (710A)					
-2-00 Entry	tanol j		Solvent	Conv	00	`	1	
Linuy	[wij	Additive	Solvent	[96][2]	[96][b]	\rightarrow		
				[/0]	[/0]	Ru-N ^{Ts}	Ir_N ^{Ts}	Ir_N_S
1	(R,R)-4	-	toluene	< 5	N.D.	HN Ph	HN Ph	HN Ph
2	(R,R)-5	-	toluene	< 5	N.D.	Ph	₽h F	Ph (SS) 6
3	(R,R)-4	TfOH (5 mol%)	toluene	< 5	N.D.	4	5	(3,3)-0
4	(R,R)-5	TfOH (5 mol%)	toluene	32	7	/Pr /Pr	-	
5	(R,R)-5	10a (5 mol%)	toluene	33	12		Ir. Ms	
6	(R,R)-5	10b (5 mol%)	toluene	60	9	HN O iPr	HN.	I N S
7	(R,R)-5	10c (5 mol%)	toluene	< 5	N.D.	Ph	Ph	
8	(R,R)-5	10d (5 mol%)	toluene	83	-17	(S,S)- 7	(S,S)- 8	(S,S)-9
9	(R,R)-5	10e (5 mol%)	toluene	50	-46			
10	(S,S)-5	10e (5 mol%)	toluene	32	87	\square		
11	(S,S)-6	10e (5 mol%)	toluene	>99	81	0. p.0		
12	(S,S)-7	10e (5 mol%)	toluene	96	77	O OH	О ОН	106 R = H 10c R = SiPh ₃
13	(S,S)-8	10e (5 mol%)	toluene	< 5	N.D.	10a	K K R	10d R = 2-naphthyl 10e R = 2.4.6-iPr ₂ C ₆ H ₂
14	(S,S)-9	10e (5 mol%)	toluene	< 5	N.D.	100		10011 11,110 / 130611 <u>2</u>
15 ^[c]	(S,S)-6	10e (5 mol%)	toluene	>99	90			
16 ^[d]	(S,S)-6	10e (5 mol%)	toluene	>99	92			
17	(S,S)-6	10e (5 mol%)	tert-amyl alcohol	95	89			
18	(S,S)- 6	10e (10 mol%)	tert-amyl alcohol	>99	93			

(c) 3 equivalents of the alcohol, (d) 5 equivalents of the alcohol

Tal
alc

19

20^[f]

ble 2: Scope of the enantioselective amination with respect to the ohol substrate.[a] HN^{_PMP} (S,S)-6 (5 mol%) OH 10e (10 mol%) OMe R² R1- R^2 tert-amyl alcohol (±) reflux, 24 h, 4 Å MS 1 (1.5 equiv) 2a (H₂N-PMP) 3 Yield [%]^[b] R1 R² Entry Product ee [%] 90 1 n-hexyl Me 3a 93 2^[c] 3 b nBu Me 90 92 3^[d] nPr 86 90 Me 3c iPr 3d 88 Me 96 4 cyclohexyl Me 3e 92 97 5 3 f 93 6 cyclopropyl Me 91 iPrCH₂ 75 82 7 Me 3g 98 8 PhCH₂CH₂ Me 3h 83 BnO(CH₂)₃ 3 i 64 85 9 Me 3j 10 TBSO(CH₂)₃ Me 95 91 11 Ph 3k 81 91 Me 12 4-MeC₆H₄ Me 31 97 91 13 4-MeOC₆H₄ Me 3 m 72 96 4-BrC₆H₄ 69 14 Me 3 n 83 $4 - CF_3C_6H_4$ 90 (40)^[e] 15 Me 30 70 (94)^[e] 16 83 94 3-MeC₆H₄ Me 3p 80 94 17 1-naphthyl Me 3 q 75 18 4-MeC₆H₄ Et 3r 73

[e] The values in parentheses refer to the corresponding reaction carried out at 80 °C for 48 h.

35

3t

71

80

69

75

Et

Et

1-naphthyl

iPr

4

Contents

Table 3: Scope of the enantioselective amination with respect to the amine substrate.^[a]

	OH │ + H₂N−R	(<i>S</i> , <i>S</i>)- 6 (5 mol%)	HN ^{∕R} <i>n</i> Bu Me 3	
nBu	u Me (土) 1b 2	<i>tert</i> -amyl alcoh 4 Å N		
Entry	R	Product	Yield [%] ^[b]	ee [%]
1	Ph	3 u	91	88
2	4-MeC ₆ H₄	3 v	97	91
3	4-CIC ₆ H ₄	3 w	81	83
4	4-PhC ₆ H₄	3 x	98	89
5	3-MeOC ₆ H ₄	3 у	95	88
6	-3-2-5 N	3 z	84	81

[a,b] See Table 2.

Scheme 2. Example of the intramolecular amination of alcohols.

Table 4: Transfer hydrogenation of a preformed imine.

Alcohol as the hydrogen donor

Scheme 3. Proposed catalytic cycle.

Thanks for your attention! Happy New Year!!!