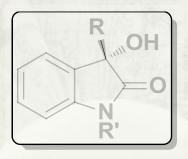
2013-01-21 RCC


Yajun REN

Asymmetric Catalysis

DOI: 10.1002/anie.201209043

Kinetic Resolution of Tertiary Alcohols: Highly Enantioselective Access to 3-Hydroxy-3-Substituted Oxindoles**

Shenci Lu, Si Bei Poh, Woon-Yew Siau, and Yu Zhao*

Angew.Chem.Int.Ed. 2013, 52,1–5

Existing methods of getting asymmetric 3-hydroxy-3-substituted oxindoles

Org.Lett. 2009, 3854–3857.

J.Am. Chem. Soc. 2006, 16488–16489

Angew. Chem. Int. Ed. 2010, 49,744-747.

Org.Lett. 2008, 1593-1595

Chiral NHCs as catalyst induce asymmetric induction of secondary alcohols

Org.Lett. **2005**, *7*,905–908

J.Am. Chem. Soc. 2004, 126,9518-9519

Kinetic resolution of 3-hydroxy-3-substituted oxindoles by NHC-catalyzed esterification

Optimum condition

Entry	Azolium	Base	Oxidant	ee _{2a} [a]	ee _{1a} [a,b]	Conv.[c]	$\mathbf{S}^{[\mathfrak{c}]}$
2	3	1.0equiv.DBU	MnO_2	88	63	42	30

[a] Determined by HPLC, [b]The absolute configuration of the recovered 1a was assigned by comparison of the mesured optical rotation of with the reported value [c]Conversions and selectivity values were calculated by the methods of Kagan and Fiaud, $Conv.=ee_1/(ee_1+ee_2)$, $S=ln[(l-Conv.)(1-ee_1)]/ln[(1-Conv.)(1+ee_1)]$, [d]DIPEA=diisopropylethylamine

Entry	Lewis acid	NaBF ₄	ee _{2a} [a]	ee _{1a} [a,b]	Conv. ^[c]	$\mathbf{S}^{[c]}$
4	$\begin{array}{c} 10 mol \\ Mg(OTf)_2 \end{array}$	50mol%	88	98	53	70

Scope of the kinetic resolution of 3-hydroxy-3-substituted oxindoles

ee₁)]/ln[(1-Conv.)(1+ee₁)]. [b] Reactions were run in CH₃CN.

		0.9	5 M, 23 °C								_/
Entry	Recovered 1	t (h); conversion (%)	Yield 2 (%); ee ₂ (%)	Yield 2 (%); ee ₂ (%)	s	Entry	Recovered 1	t (h); conversion (%)	Yield 2 (%); ee ₂ (%)	Yield 2 (%); ee ₂ (%)	S
1	OH N Bn	24; 53	52; 87	45; 98	70	8[p]	Ph OH N Bn	48; 60	57; 64	32; 98	20
2 ^[b]	Me OH N N Bn	24; 55	52; 80	39; 99	46	9	HO 4-F-Ph N O N Bn	36; 39	34; 86	52; 55	23
3[p]	Et OH N N Bn	24; 56	53; 78	40; 99	41	10 ^[b]	HO 4-MeO-Pl	h 36; 53	53; 80	44; 92	29
4	n-hexyl OH	24; 46	43; 92	52; 80	59	11	N OH	48; 34	30; 83	60; 43	16
5	iPr OH N N Bn	24; 27	24; 95	69; 35	56		N N Bn				
6	OH N Bn	36; 57	53; 72	42; 98	27	for th	nless stated oth ne period of tim yed from comm	e as indicated.	All reagents	were used as	ΉF
7	N OH	24; 63	59; 58	35; 99	18	Conv	versions and sele agan and Fiaud	ectivity values	were calculat	ed by the met	hods

Scope of the kinetic resolution of 3-hydroxy-3-substituted oxindoles

Entry	recovered 1	t [h]; Conversation [%]	Yield ₂ [%] ee ₂ [%]	Yield ₁ [%] ee ₁ [%]	S	Entry	recovered 1	t [h]; Conversation [%]	Yield ₂ [%] ee ₂ [%]	Yield ₁ [%] ee ₁ [%]	S
1	MeO OH ON OH Bn 11	72;52	51;91	46;98	78	4	OH N PMB 10	55;52	50;89	47;97	68
2	CI OH ON ON THE STATE OF THE ST	72;52	51;83	45;92	34	5	OH N N Me		24;80	70;31	12
3	Br OH OH N OH	72;54 1	52;81	44;95	35	6	OH N 1	O 55;29	26;85	67;35	17

Proposed reaction pathway

Conclusion:

≥ It is the first time for asymmetric induction of tertiary alcohols using NHC catalysis

▶ The substrate scope of this catalytic system turned out to be remarkably broad

ఎOxindole structure is important for this system to work, such as 1-methyl-1-indanol lacking the amide moiety showed no reactivity under similar conditions.

→ Futher studies are needed to expand the scope of this catalyst and explain the function of NaBF₄

Thanks for your attention!